**RG 23 Regulations** 



## GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE (AUTONOMOUS)

NELLORE-524317 (A.P) INDIA

B.TECH - ELECTRONICS & COMMUNICATION ENGINEERING (ACCREDITATED BY NBA) COURSE STRUCTURE AND SYLLABIUNDER R 23 REGULATIONS



## AUTONOMOUS

# DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING (ACCREDITATED BY NBA)

#### **DEPARTMENT VISION**

Achieving academic excellence in Electronics and Communication Engineering by shaping next-generation technocrats keeping pace with socio-economic needs.

#### **DEPARTMENT MISSION**

**M1:** Adopting outcome oriented teaching -learning processes to provide comprehensive knowledge in the application of Electronics and Communication Engineering principles.

M2: Striving for implementation of advanced technology to cater to industrial demands and societal concerns.

M3: Producing highly skilled and responsible professionals with robust ethical values.

**M4:** Integrating technical capabilities, life skills and entrepreneurship abilities to produce dynamic contributors to social advancement.

#### Program Educational Objectives (PEOs)

**PEO-1:** Demonstrating a deep passion for continuous learning through technical expertise for a promising career.

**PEO-2:** Exhibiting a strong commitment to serving the society with adherence to professional ethics.

**PEO-3:** Managing resources efficiently as competent engineers through effective social interaction.

**PEO-4:** Engaging in advanced learning and contributing to technological innovations.

#### **Program Outcomes**

| DO1         |                                                                                                     |  |
|-------------|-----------------------------------------------------------------------------------------------------|--|
| POI         | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                     |  |
|             | fundamentals, and an engineering specialization to the solution of complex engineering              |  |
|             | problems.                                                                                           |  |
| PO2         | Problem analysis: Identify, formulate, review research literature, and analyze complex              |  |
|             | engineering problems reaching substantiated conclusions using first principles of                   |  |
|             | mathematics, natural sciences, and engineering sciences.                                            |  |
| PO3         | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and      |  |
|             | design system components or processes that meet the specified needs with appropriate                |  |
|             | consideration for the public health and safety, and the cultural, societal, and environmental       |  |
|             | considerations.                                                                                     |  |
| PO4         | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and                |  |
|             | research methods including design of experiments, analysis and interpretation of data, and          |  |
|             | synthesis of the information to provide valid conclusions.                                          |  |
| PO5         | Modern tool usage: Create select and apply appropriate techniques, resources, and                   |  |
| 100         | modern engineering and IT tools including prediction and modelling to complex                       |  |
|             | engineering activities with an understanding of the limitations                                     |  |
| <b>D</b> O6 | The angineer and society: Apply reasoning informed by the contextual knowledge to                   |  |
| 100         | assass societal health safety logal and cultural issues and the consequent responsibilities         |  |
|             | assess societal, nearth, safety, legal and cultural issues and the consequent responsionities       |  |
| DOT         | Televant to the professional engineering practice.                                                  |  |
| P07         | Environment and sustainability: Understand the impact of the professional engineering               |  |
|             | solutions in societal and environmental contexts, and demonstrate the knowledge of, and             |  |
|             | need for sustainable development                                                                    |  |
| PO8         | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and |  |
|             | norms of the engineering practice.                                                                  |  |
| PO9         | Individual and team work: Function effectively as an individual, and as a member or                 |  |
|             | leader in diverse teams, and in multidisciplinary settings.                                         |  |
| PO10        | Communication: Communicate effectively on complex engineering activities with the                   |  |
|             | engineering community and with society at large, such as, being able to comprehend and              |  |
|             | write effective reports and design documentation, make effective presentations, and give            |  |
|             | and receive clear instructions.                                                                     |  |
| PO11        | Project management and finance: Demonstrate knowledge and understanding of the                      |  |
|             | engineering and management principles and apply these to one's own work, as a member                |  |
|             | and leader in a team, to manage projects and in multidisciplinary environments.                     |  |
| <b>PO12</b> | Life-long learning: Recognize the need for, and have the preparation and ability to engage          |  |
|             | in independent and life-long learning in the broadest context of technological change.              |  |

## **Program Specific Outcomes**

PSO1 Design and develop electronic circuits and communication systems, applying the principlesof signal, image processing, VLSI, Embedded and wireless applications relevant to industry and society.

**PSO2** Adopting software tools like Matlab, Xilinx, Microwind, NS-2 to develop intelligent systems to offer customized solutions.



**GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY :: NELLORE** DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## B. Tech ECE – RG 23 Regulation

## B. Tech – II Year I Semester

| Semester - 3 (Theory-5, Lab-2, SEC-1,AC-1) |                 |          |                                                                               |     |          |      |         |
|--------------------------------------------|-----------------|----------|-------------------------------------------------------------------------------|-----|----------|------|---------|
| Sl.                                        | Category        | Course   | Course Title                                                                  | Hou | rs per v | veek | Credits |
| No.                                        |                 | Code     |                                                                               | L   | Т        | Р    | С       |
| 1.                                         | BS              | 23A0014T | Probability and Complex Variables                                             | 3   | 0        | 0    | 3       |
| 2.                                         | HSMC            | 23A0021T | Universal Human Values–<br>Understanding Harmony and Ethical<br>Human Conduct | 2   | 1        | 0    | 3       |
| 3.                                         | ES              | 23A0401T | Signals, Systems and Stochastic Processes                                     | 3   | 0        | 0    | 3       |
| 4.                                         | PCC             | 23A0402T | Electronic Devices and Circuits                                               | 3   | 0        | 0    | 3       |
| 5.                                         | PCC             | 23A0403T | Digital Circuits Design                                                       | 3   | 0        | 0    | 3       |
| 6.                                         | PCC             | 23A0404P | Electronic Devices and Circuits Lab                                           | 0   | 0        | 3    | 1.5     |
| 7.                                         | PCC             | 23A0405P | Digital Circuits& Signal Simulation<br>Lab                                    | 0   | 0        | 3    | 1.5     |
| 8.                                         | SEC             | 23A0510P | Python Programming                                                            | 0   | 1        | 2    | 2       |
| 9.                                         | Audit<br>Course | 23A0109T | Environmental Science                                                         | 2   | 0        | 0    | -       |
| Total 16 02 08 20                          |                 |          |                                                                               |     |          |      |         |



## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

| B. Tech ECE – RG 23 Regulation<br>PROBABILITY AND COMPLEX VARIABLES                            |                                                                                                     |                   |                       |                  |                  |                   |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|-----------------------|------------------|------------------|-------------------|
| Course Code                                                                                    | L:T·P·S                                                                                             | Credits           | Exam marks            | Exam Durat       | tion             | Course Type       |
| 23A0014T                                                                                       | 3.0.0.0                                                                                             | 3                 | CIE·30                |                  |                  | BS                |
| 25400141                                                                                       | 5.0.0.0                                                                                             | 5                 | SEE:70                | 5 110015         |                  | BB                |
| Syllabus                                                                                       |                                                                                                     |                   |                       |                  | To               | tal Hours: 45     |
| Unit-I Probability Distributions 9 Hrs                                                         |                                                                                                     |                   |                       |                  | 9 Hrs            |                   |
| Introduction to                                                                                | Introduction to Probability Theory, Random variables (discrete and continuous), probability density |                   |                       |                  | bability density |                   |
| functions, prope                                                                               | rties, mathema                                                                                      | tical expectation | on. Mixed Random      | n Variable, Dis  | tributi          | on and Density    |
| functions, Proper                                                                              | ties, Binomial, l                                                                                   | Poisson, Unifor   | m, Gaussian, Expon    | ential, Rayleigh | •                |                   |
| Moments_mome                                                                                   | ents about the                                                                                      | origin Central    | moments Variance      | and Skew Cl      | ehveh            | ev's inequality   |
| moment generat                                                                                 | ing function ch                                                                                     | aracteristic fun  | ction                 | and Skew, Ci     | leoysii          | ev s mequanty,    |
| Unit-II                                                                                        |                                                                                                     | Onerations        | On Random Varia       | hle              |                  | 9 Hrs             |
| Multiple Randon                                                                                | n Variables: Ve                                                                                     | ector Random      | Variables, Joint Dis  | tribution Functi | on Pr            | operties of Joint |
| Distribution. Mai                                                                              | rginal Distributi                                                                                   | on Functions. (   | Conditional Distribut | tion and Density | $v - Po^2$       | int Conditioning. |
| Interval condition                                                                             | ning, Statistical                                                                                   | Independence.     |                       | tion und Donsn.  | , 10.            | int conditioning, |
| Unit -III                                                                                      | O]                                                                                                  | perations On N    | Aultiple Random V     | ariables         |                  | 9 Hrs             |
| Operations on M                                                                                | Iultiple Randon                                                                                     | n Variables: Ex   | xpected Value of a    | Function of Ra   | ndom             | Variables, Joint  |
| Moments about                                                                                  | the Origin, Jo                                                                                      | int Central Mo    | oments, Joint Chara   | acteristic Funct | ions, J          | Jointly Gaussian  |
| Random Variable                                                                                | es: Two Randon                                                                                      | n Variables case  | e, N Random Variab    | le case, Propert | ies of (         | Gaussian random   |
| variables.                                                                                     |                                                                                                     |                   |                       |                  |                  |                   |
| Unit -IVComplex Variable – Differentiation9 Hrs                                                |                                                                                                     |                   | 9 Hrs                 |                  |                  |                   |
| Introduction to f                                                                              | functions of con                                                                                    | mplex variable    | -concept of Limit &   | k continuity- D  | ifferen          | tiation, Cauchy-  |
| Riemann equatio                                                                                | ons, analytic fu                                                                                    | nctions harmor    | nic functions, findin | g harmonic con   | njugate          | e-construction of |
| analytic function                                                                              | by Milne Thom                                                                                       | son method.       |                       |                  |                  |                   |
| Unit -V                                                                                        |                                                                                                     | Complex V         | ariable – Integrati   | on               |                  | 9 Hrs             |
| Line integral-Co                                                                               | ntour integration                                                                                   | on, Cauchy's i    | ntegral theorem(Sin   | nple Case), Car  | uchy I           | ntegral formula,  |
| Power series ex                                                                                | pansions: Taylo                                                                                     | or's series, zei  | ros of analytic fun   | ctions, singular | ities, 1         | Laurent's series, |
| Residues, Cauchy Residue theorem (without proof).                                              |                                                                                                     |                   |                       |                  |                  |                   |
| Textbooks:                                                                                     |                                                                                                     |                   |                       |                  |                  |                   |
| 1. Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", 4th Edition, |                                                                                                     |                   |                       |                  |                  |                   |
| ТМН, 2002.                                                                                     |                                                                                                     |                   |                       |                  |                  |                   |
| 2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 2017, 44th Edition         |                                                                                                     |                   |                       |                  |                  |                   |
| Reference Books:                                                                               |                                                                                                     |                   |                       |                  |                  |                   |
| L                                                                                              |                                                                                                     |                   |                       |                  |                  |                   |



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

- 1. Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", 4th Edition, PHI, 2002
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India
- Henry Stark and John W.Woods, "Probability and Random Processes with Application to Signal Processing," 3rd Edition, Pearson Education, 2002.
- 4. B.V.Ramana, Higher Engineering Mathematics, Mc Graw Hill publishers.

## **E-resources:**

- 1. https://onlinecourses.nptel.ac.in/noc20\_ma50/preview
- 2. https://onlinecourses.nptel.ac.in/noc21\_ma66/preview#:~:text=This%20course%20provides%20rand om%20variable,and%20simple%20Markovian%20queueing%20models.

## Course Outcomes(CO):

On completion of this course, student will be able to:

- CO1: Understand the concepts of Probability, Random Variables and their characteristics (L2)
- **CO2:** Learn how to deal with multiple random variables, conditional probability, joint distribution and statistical independence. (L3, L5)
- CO3: Formulate and solve the engineering problems involving random variables. (L3)
- **CO4:** Understand Cauchy-Riemann equations, analytic functions and various properties of analytic functions.(L2, L3)

**CO5:** Understand Cauchy theorem, Cauchy integral formulas and apply these to evaluate complex contour integrals. Classify singularities and poles, residues.(L3)



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

#### UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY AND ETHICAL HUMAN CONDUCT

| Course Code | L:T:P:S | Credits | Exam marks | Exam Duration | Course Type |
|-------------|---------|---------|------------|---------------|-------------|
| 23A0021T    | 2:1:0:0 | 3       | CIE:30     | 3 Hours       | HSMC        |
|             |         |         | SEE:70     |               |             |

#### **Course Objectives:**

- 1. To help the students appreciate the essential complementary between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- 2. To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- 3. To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behaviour and mutually enriching interaction with Nature.

|    | trustful and mutually fulfilling human behaviour and mutually enriching interaction with Nature. |                                                                         |           |         |  |  |
|----|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------|---------|--|--|
|    | Syllabus                                                                                         |                                                                         |           |         |  |  |
|    | Unit-I                                                                                           | Introduction to Value Education (6 lectures and 3 tutorials for prac    | ctice ses | sion)   |  |  |
| •  | Right Und                                                                                        | lerstanding, Relationship and Physical Facility (Holistic Development a | and the   | Role of |  |  |
|    | Education)                                                                                       |                                                                         |           |         |  |  |
| •  | Understand                                                                                       | ling Value Education                                                    |           |         |  |  |
| •  | Practice Se                                                                                      | ssion PS1 Sharing about Oneself                                         |           |         |  |  |
| •  | self-explora                                                                                     | ation as the Process for Value Education                                |           |         |  |  |
| •  | Continuous                                                                                       | s Happiness and Prosperity – the Basic Human Aspirations                |           |         |  |  |
| •  | Exploring l                                                                                      | Human Consciousness                                                     |           |         |  |  |
| •  | <ul> <li>Happiness and Prosperity – Current Scenario</li> </ul>                                  |                                                                         |           |         |  |  |
| •  | Method to                                                                                        | Fulfill the Basic Human Aspirations                                     |           |         |  |  |
| •  | Exploring I                                                                                      | Natural Acceptance                                                      |           |         |  |  |
| Pr | actice Session                                                                                   | ons for UNIT I – Introduction to Value Education                        |           |         |  |  |
| -  | PS1 Sharin                                                                                       | g about Oneself                                                         |           |         |  |  |
| •  | PS2 Exploi                                                                                       | ring Human Consciousness                                                |           |         |  |  |
| •  | PS3 Exploi                                                                                       | ring Natural Acceptance                                                 |           |         |  |  |
|    | Unit-II                                                                                          | Harmony in the Human Being (6 lectures and 3 tutorials for pract        | ice sessi | on)     |  |  |
| •  | Understand                                                                                       | ling Human being as the Co-existence of the self and the body.          |           |         |  |  |
| •  | Distinguish                                                                                      | ning between the Needs of the self and the body                         |           |         |  |  |
| •  | Exploring t                                                                                      | the difference of Needs of self and body.                               |           |         |  |  |
| •  | The body a                                                                                       | is an Instrument of the self                                            |           |         |  |  |
| •  | • Understanding Harmony in the self                                                              |                                                                         |           |         |  |  |
| •  | Exploring Sources of Imagination in the self                                                     |                                                                         |           |         |  |  |
| •  | • Harmony of the self with the body                                                              |                                                                         |           |         |  |  |
| •  | Programme to ensure self-regulation and Health                                                   |                                                                         |           |         |  |  |
| •  | Exploring l                                                                                      | Harmony of self with the body                                           |           |         |  |  |
| Pr | actice Session                                                                                   | ons for UNIT II – Harmony in the Human Being                            |           |         |  |  |



DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

| B. Anthen Hardward B.                                                               | <b>B</b> Task ECE DC 23 Dogulation                                                    |  |  |  |  |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| DS/ Evolo                                                                           | ring the difference of Needs of self and body                                         |  |  |  |  |  |
| <ul> <li>F54 Explo</li> <li>PS5 Explo</li> </ul>                                    | ring Sources of Imagination in the self                                               |  |  |  |  |  |
| <ul> <li>I S5 Explo</li> <li>PS6 Explo</li> </ul>                                   | <ul> <li>PS6 Exploring Harmony of self with the body</li> </ul>                       |  |  |  |  |  |
|                                                                                     | Harmony in the Family and Society (6 lectures and 3 tutorials for practice session)   |  |  |  |  |  |
|                                                                                     | fraction in the Falling and Society (0 rectures and 5 tutorials for practice session) |  |  |  |  |  |
| Harmony i                                                                           | n the Family – the Basic Unit of Human Interaction                                    |  |  |  |  |  |
| • Trust' – the                                                                      | e Foundational Value in Relationship                                                  |  |  |  |  |  |
| • Exploring                                                                         | the Feeling of Trust                                                                  |  |  |  |  |  |
| • 'Respect' –                                                                       | as the Right Evaluation                                                               |  |  |  |  |  |
| • Exploring                                                                         | the Feeling of Respect                                                                |  |  |  |  |  |
| • Other Feel                                                                        | ings, Justice in Human-to-Human Relationship                                          |  |  |  |  |  |
| • Understand                                                                        | ling Harmony in the Society                                                           |  |  |  |  |  |
| • Vision for                                                                        | the Universal Human Order                                                             |  |  |  |  |  |
| • Exploring                                                                         | Systems to fulfil Human Goal                                                          |  |  |  |  |  |
| Practice Sessi                                                                      | ons for UNIT III – Harmony in the Family and Society                                  |  |  |  |  |  |
| <ul> <li>PS7 Explo</li> </ul>                                                       | ring the Feeling of Trust                                                             |  |  |  |  |  |
| <ul> <li>PS8 Explo</li> </ul>                                                       | ring the Feeling of Respect                                                           |  |  |  |  |  |
| <ul> <li>PS9 Explo</li> </ul>                                                       | ring Systems to fulfil Human Goal                                                     |  |  |  |  |  |
| Unit -IV                                                                            | Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session)     |  |  |  |  |  |
| • Understand                                                                        | ling Harmony in the Nature                                                            |  |  |  |  |  |
| • Interconne                                                                        | ctedness, self-regulation and Mutual Fulfilment among                                 |  |  |  |  |  |
| • the Four O                                                                        | rders of Nature                                                                       |  |  |  |  |  |
| • Exploring                                                                         | the Four Orders of Nature                                                             |  |  |  |  |  |
| Realizing I                                                                         | Existence as Co-existence at All Levels                                               |  |  |  |  |  |
| • The Holist                                                                        | ic Perception of Harmony in Existence                                                 |  |  |  |  |  |
| • Exploring                                                                         | Co-existence in Existence.                                                            |  |  |  |  |  |
| Practice Sessi                                                                      | ons for UNIT IV – Harmony in the Nature (Existence)                                   |  |  |  |  |  |
| <ul> <li>PS10 Expl</li> </ul>                                                       | oring the Four Orders of Nature                                                       |  |  |  |  |  |
| <ul> <li>PS11 Expl</li> </ul>                                                       | oring Co-existence in Existence                                                       |  |  |  |  |  |
| Unit -V                                                                             | Implications of the Holistic Understanding – a Look at Professional Ethics            |  |  |  |  |  |
|                                                                                     | (6 lectures and 3 tutorials for practice session)                                     |  |  |  |  |  |
| Natural Act                                                                         | cceptance of Human Values                                                             |  |  |  |  |  |
| • Definitive                                                                        | ness of (Ethical) Human Conduct                                                       |  |  |  |  |  |
| • Exploring                                                                         | Exploring Ethical Human Conduct                                                       |  |  |  |  |  |
| A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order |                                                                                       |  |  |  |  |  |
| Competence                                                                          | Competence in Professional Ethics                                                     |  |  |  |  |  |
| • Exploring                                                                         | Exploring Humanistic Models in Education                                              |  |  |  |  |  |
| Holistic Te                                                                         | Holistic Technologies, Production Systems and Management Models-Typical Case Studies  |  |  |  |  |  |
| • Strategies                                                                        | Strategies for Transition towards Value-based Life and Profession                     |  |  |  |  |  |
| • Exploring                                                                         | Steps of Transition towards Universal Human Order                                     |  |  |  |  |  |
| Practice Sessi                                                                      | ons for UNIT V – Implications of the Holistic Understanding – a Look at Professional  |  |  |  |  |  |
| Ethics                                                                              |                                                                                       |  |  |  |  |  |
| <ul> <li>PS12 Expl</li> </ul>                                                       | oring Ethical Human Conduct                                                           |  |  |  |  |  |



DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

- PS13 Exploring Humanistic Models in Education
- PS14 Exploring Steps of Transition towards Universal Human Order

#### Textbooks:

- 1. R R Gaur, R Asthana, G P Bagaria, A Foundation Course in Human Values and Professional Ethics, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- 2. R R Gaur, R Asthana, G P Bagaria, *Teachers' Manual for A Foundation Course in Human Values and Professional Ethics*, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

#### **Reference Books:**

- 1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.

#### **E-resources:**

- 1. <u>https://fdp-si.aicte-india.org/UHV- %20Class%20Notes%20&%20Handouts/UHV%20Handout%201</u> <u>Introduction%20to%20Value%20Education.pdf</u>
- 2. <u>https://fdp-si.aicte-india.org/UHV-20Class%20Notes%20&%20Handouts/UHV%20Handout%202-Harmony%20in%20the%20Human%20Being.pdf</u>
- 3. <u>https://fdp-si.aicte-india.org/UHV-20Class%20Notes%20&%20Handouts/UHV%20Handout%203-Harmony%20in%20the%20Family.pdf</u>
- 4. <u>https://fdp-si.aicte-india.org/UHV%201%20Teaching%20Material/D3-0Respect%20July%2023.pdf</u>

#### Course Outcomes(CO):

On completion of this course, student will be able to:

**CO1:** Define the terms like Natural Acceptance, Happiness and Prosperity (L1, L2)

CO2: Identify one's self, and one's surroundings (family, society nature) (L1, L2)

**CO3:** Apply what they have learnt to their own self in different day-to-day settings in real life (L3)

CO4: Relate human values with human relationship and human society. (L4)

CO5: Justify the need for universal human values and harmonious existence (L5)

CO6: Develop as socially and ecologically responsible engineers (L3, L6)



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# B. Tech ECE – RG 23 Regulation

| SIGNALS, STSTEMS AND STOCHASTIC TROCESSES |         |         |            |               |             |
|-------------------------------------------|---------|---------|------------|---------------|-------------|
| Course Code                               | L:T:P:S | Credits | Exam marks | Exam Duration | Course Type |
| 23A0401T                                  | 3:0:0:0 | 3       | CIE:30     | 3 Hours       | ES          |
|                                           |         |         | SEE:70     |               |             |

#### **Course Objectives:**

- Understanding the basics of signals and systems required for ECE courses.
- To teach concepts of signals and systems and its analysis using different transform techniques.
- To provide basic understanding of random processes which is essential for the random signals and systems encountered in communications and signal Processing areas

| Syllabus | Total Hours: 45 |
|----------|-----------------|
| Unit-I   | 9 Hrs           |

**Signals & Systems:** Basic definitions and classification of Signals and Systems (Continuous time and discrete time), operations on signals, Concepts of Convolution and Correlation of signals, Analogy between vectors and signals-Orthogonality, mean square error,

**Fourier series:** Trigonometric & Exponential forms of Fourier series, Properties, Concept of discrete spectrum, Illustrative Problems.

| Unit-II | 9 Hrs |
|---------|-------|
|---------|-------|

9 Hrs

**Fourier Transform**: Definition, Computation and properties of Fourier transform for different types of signals and systems, Inverse Fourier transform. Sampling: Sampling theorem – Graphical and analytical proof for Band Limited Signals, Reconstruction of signal from its samples, Effect of under sampling – Aliasing. Illustrative Problems.

**Laplace Transform:** Definition, ROC, Properties, Inverse Laplace transforms, the s-plane and BIBO stability, Transfer functions, System Response to standard signals, Solution of differential equations with initial conditions, Illustrative Problems.

Unit -III

| Signal Transmission through Linear Systems: Linear system, impulse response,        | Response of a linear     |
|-------------------------------------------------------------------------------------|--------------------------|
| system for different input signals, linear time-invariant (LTI) system, linear time | variant (LTV) system,    |
| Transfer function of a LTI system. Filter characteristics of linear systems. Distor | tion less transmission   |
| through a system, Signal bandwidth, System bandwidth, Ideal LPF, HPF and BPF cha    | aracteristics, Causality |
| and Paley-Wiener criterion for physical realization, Relationship between bandwidth | and rise time, Energy    |
| and Power spectral densities, Illustrative Problems.                                |                          |

| Unit -IV                                                                               | 9 Hrs                   |
|----------------------------------------------------------------------------------------|-------------------------|
| Random Processes - Temporal Characteristics: The Random Process Conc                   | ept, Classification of  |
| Processes, Deterministic and Nondeterministic Processes, Distribution and Density      | Functions, concept of   |
| Stationarity and Statistical Independence. First-Order Stationary Processes, Second-   | Order and Wide-Sense    |
| Stationarity, (N-Order) and Strict Sense Stationarity, Time Averages and Ergod         | licity, Autocorrelation |
| Function and Its Properties, Cross-Correlation Function and Its Properties, Covariance | e Functions, Gaussian   |
| Random Processes, Poisson Random Process. Random Signal, Mean and Mean-squ             | ared Value of System    |



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output.

| <b>T</b> T <b>1</b> | <b>T</b> 7 |
|---------------------|------------|
| I nit               | -V         |
| Omt                 |            |

9 Hrs

**Random Processes – Spectral Characteristics:** The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross Correlation Function. Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output.

#### Textbooks:

1. Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", 4th Edition, TMH, 2002.

2. A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", 2nd Edition, PHI, 2009.

#### **Reference Books:**

- 1. Signals, Systems & Communications B.P. Lathi, 2013, BSP.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", 4th Edition, PHI, 2002
- 3. Simon Haykin and Van Veen, "Signals & Systems", 2nd Edition, Wiley, 2005.
- 4. Matthew Sadiku and Warsame H. Ali, "Signals and Systems A primer with MATLAB", CRC Press, 2016.
- 5. Hwei Hsu, "Schaum's Outline of Signals and Systems", 4thEdition, TMH, 2019.

#### Course Outcomes(CO):

On completion of this course, student will be able to:

**CO1:** Understand the mathematical description and representation of continuous-time and discrete-time signals and systems.

CO2: understand the concepts of various transform techniques and Random Processes (L2)

**CO3:** Apply sampling theorem to convert continuous-time signals to discrete-time signals and reconstruct back, different transform techniques to solve signals and system related problems. (L3)

**CO4:** Formulate and solve engineering problems involving random processes. (L3)

**CO5:** Analyze the frequency spectra of various continuous-time signals using different transform methods. (L4)

CO6: Classify the systems based on their properties and determine the response of them. (L4)



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation **ELECTRONIC DEVICES & CIRCUITS**

| <b>Course Code</b> | L:T:P:S | Credits | Exam marks    | Exam Duration | Course Type |
|--------------------|---------|---------|---------------|---------------|-------------|
| 23A0402T           | 3:0:0:0 | 3       | CIE:30        | 3 Hours       | PCC         |
|                    |         |         | <b>SEE:70</b> |               |             |
|                    |         | •       |               | *             | •           |

#### **Course Objectives:**

- Students will be able understand the basic principles of all semiconductor devices.
- Able to analyze diode circuits, various biasing and small signal equivalent circuits of amplifiers, compare the performance of BJTs and MOSFETs
- Able to design rectifier circuits and various amplifier circuits using BJTs and MOSFETs.

| Syllabus | Total Hours: 45 |
|----------|-----------------|
| Unit-I   | 9 Hrs           |

**PN junction diode:** Band structure of PN Junction, Quantitative Theory of PN Diode, types of PN junction diode, VI Characteristics, PN diode current equation, Diode resistance, Transition and Diffusion Capacitance, effect of temperature on PN junction diode, Half-wave, Full-wave and Bridge Rectifiers with and without Filters, Ripple Factor and Regulation Characteristics, Clipping and Clamping circuits, Voltage doubler ,Illustrative problems.

Special Diodes: Zener and Avalanche Breakdowns, VI Characteristics of Zener diode, Zener diode as voltage regulator, Construction, operation and VI characteristics of Tunnel Diode, Varactor Diode, LED, LCD, Photo Diode, SCR and UJT.

| Unit-II                                                                                                   | 9 Hrs                   |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|
| Bipolar Junction Transistors: Transistor construction, BJT Operation, Transistor as an Amplifier and as a |                         |  |  |  |  |  |
| Switch, Common Emitter, Common Base and Common Collector Configurations, Limits of Operation,             |                         |  |  |  |  |  |
| BJT Specifications.                                                                                       |                         |  |  |  |  |  |
| Biasing and Stabilization: Operating Point, DC and AC Load Lines, Importance of Biasing, Fixed Bias,      |                         |  |  |  |  |  |
| Collector to Base Bias, Self-Bias, Bias Stability, Thermal Runaway, Thermal                               | Stability, Illustrative |  |  |  |  |  |
| problems                                                                                                  |                         |  |  |  |  |  |
| Unit -III                                                                                                 | 9 Hrs                   |  |  |  |  |  |
| MOS Field Effect Transistors: Introduction, Device Structure and Physical Operat                          | ion, CMOS, V - I        |  |  |  |  |  |
| Characteristics, MOSFET Circuits at DC, MOSFET as an Amplifier and as a Switch                            | . Biasing in MOS        |  |  |  |  |  |
| Amplifier circuits - biasing by fixing VGS with and without source resistance biasing                     | ing using drain to gate |  |  |  |  |  |

biasing by fixing VGS with and without source resistance, biasing using drain to gate feedback resistor, biasing using constant current source, body effect, Problem solving.

| Unit -IV                                                                              | 9 Hrs                     |
|---------------------------------------------------------------------------------------|---------------------------|
| BJT Small Signal Operation and Models- the transconductance, input resistar           | nce at the base, input    |
| resistance at the emitter, Voltage gain, separating the Signal and the DC Quantities, | , The Hybrid $\pi$ Model, |
| the T Model. Single Stage BJT Amplifiers - Common-Emitter (CE) amplifier wit          | hout and with emitter     |
| resistance, Common-Base (CB) amplifier, Common-Collector (CC) amplifier               | or Emitter Follower,      |
| Problem solving.                                                                      |                           |

rs



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

**MOSFET Small Signal Operation Models**– the dc bias, separating the DC analysis and the signal analysis, Small signal equivalent circuit models, the transconductance, the T equivalent circuit model, Single stage MOS Amplifiers – common source (CS) amplifier without and with source resistance, common gate (CG) amplifier, source follower, Problem Solving.

#### Textbooks:

- 1. Adel S. Sedra and Kenneth C. Smith, "Microelectronic Circuits Theory and Applications", 6<sup>th</sup> Edition, Oxford Press, 2013.
- 2. J. Milliman and C Halkias, "Integrated electronics", 2nd Edition, Tata McGraw Hill, 1991.

#### **Reference Books:**

- 1. Donald A Neamen, "Electronic Circuits analysis and design", 3rd Edition, McGraw Hill (India), 2019.
- 2. Behzad Razavi, "Microelectronics", Second edition, Wiley, 2013.
- 3. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits," 9th Edition, Pearson, 2006.
- 4. Jimmie J Cathey, "Electronic Devices and Circuits," Schaum's outlines series, 3<sup>rd</sup> edition, McGraw-Hill (India), 2010.

#### Course Outcomes(CO):

On completion of this course, student will be able to:

**CO1:** Understand principle of operation, characteristics and applications of Semiconductor diodes, Bipolar Junction Transistor and MOSFETs. (L2)

**CO2:** Applying the basic principles solving the problems related to Semiconductor diodes, BJTs, and MOSFETs. (L3)

CO3: Analyze diode circuits for different applications such as rectifiers, clippers and clampers (L4)

CO4: analyze biasing circuits of BJTs, and MOSFETs. (L4)

CO5: Design of diode circuits and amplifiers using BJTs, and MOSFETs. (L4)

CO6: Compare the performance of various semiconductor devices. (L4)



Γ

## GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY :: NELLORE

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### **B.** Tech ECE – RG 23 Regulation DIGITAL CIRCUITS DESIGN

|                      | I T D C           | $\mathbf{C} = \mathbf{P} \mathbf{c}$ |                         |                    |                         |
|----------------------|-------------------|--------------------------------------|-------------------------|--------------------|-------------------------|
| Course Code          | L:1:P:5           | Credits                              | Exam marks              | Exam Durati        | on Course Type          |
| 23A04031             | 3:0:0:0           | 3                                    | CIE:30<br>SEE:70        | 3 Hours            | PCC                     |
| Course Objective     | `S:               |                                      | SEE.70                  |                    |                         |
| Understand           | d the propertie   | s of Boolean                         | algebra logic oper      | ations and min     | imization of Boolea     |
| functions            | a the propertie   |                                      | uigeoiu, iogie opei     | ations, and min    |                         |
| runctions.           |                   |                                      |                         |                    |                         |
| • Analyze co         | ombinational an   | d analyze seque                      | ential logic circuits.  |                    |                         |
| • Understand         | d the concepts of | of FSM and con                       | npare various Progra    | mmable logic dev   | vices.                  |
| Model con            | nbinational and   | sequential circu                     | its using HDLs.         |                    |                         |
|                      |                   | Syllabus                             |                         |                    | Total Hours: 45         |
| Unit-I               | Boolean a         | algebra, logic o                     | perations, and min      | imization of       | 9 Hrs                   |
|                      |                   | Boole                                | ean functions           |                    |                         |
| Number Systems       | and Codes, Rep    | presentation of                      | unsigned and signed     | integers, Floatin  | g Point representatio   |
| of real numbers, I   | Laws of Boolea    | an Algebra, The                      | eorems of Boolean A     | Algebra, Realizat  | ion of functions usin   |
| logic gates, Canor   | nical forms of B  | oolean Function                      | ns, Minimization of l   | Functions using I  | Karnaugh Maps.          |
| Unit-II              |                   | Combinatio                           | onal Logic Circuits     |                    | 9 Hrs                   |
| Combinational cir    | cuits, Design v   | with basic logic                     | e gates, design proce   | edure, adders, su  | btractors, 4-bit binar  |
| adder/ subtractor    | circuit, BCD a    | dder, carry loo                      | k- a-head adder, bir    | ary multiplier, n  | nagnitude comparato     |
| data selectors, pric | ority encoders, o | decoders, multij                     | plexers, demultiplexe   | ers.               |                         |
| Unit -III            |                   | Hardware D                           | escription Languag      | e                  | 9 Hrs                   |
| Introduction to Ve   | erilog - structur | al specification                     | of logic circuits, be   | havioral specific  | ation of logic circuits |
| hierarchical Verile  | og Code, Verilo   | og for combinat                      | tional circuits - cond  | itional operator,  | if-else statement, cas  |
| statement, for loo   | p using storage   | e elements with                      | CAD tools-using V       | erilog constructs  | s for storage elements  |
| flip-flop with clea  | r capability, usi | ng Verilog con                       | structs for registers a | nd counters.       |                         |
| Unit -IV             |                   | Sequen                               | tial Logic Circuits     |                    | 9 Hrs                   |
| Basic architectura   | l distinction be  | etween combination                   | ational and sequenti    | al circuits, Desig | gn procedure, latches   |
| flip-flops, truth ta | bles and excita   | tion tables, tim                     | ing and triggering c    | onsideration, cor  | nversion of flip- flops |
| design of counter    | s, ripple count   | ers, synchronou                      | is counters, ring co    | unter, Johnson c   | ounter, registers, shir |
| registers, universa  | l shift register. |                                      |                         |                    |                         |
| Unit -V              | Finite Sta        | te Machines ar                       | nd Programmable L       | ogic Devices       | 9 Hrs                   |
| Types of FSM, ca     | apabilities and   | limitations of F                     | SM, state assignment    | nt, realization of | FSM using flip-flops    |
| Mealy to Moore       | conversion and    | vice-versa, rec                      | luction of state table  | es using partition | technique, Design o     |
| sequence detector    | . Types of PLD    | 's: PROM, PA                         | L, PLA, basic struct    | ure of CPLD and    | FPGA, advantages of     |
| FPGAs, Design of     | f sequential circ | uits using RON                       | Is, PLAs, CPLDs and     | d FPGAs,           |                         |
| Textbooks:           |                   |                                      |                         |                    |                         |



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

- 1. M. Morris Mano, "Digital Design", 3rd Edition, PHI. (Unit I to IV)
- 2. Stephen Brown and ZvonkoVranesic, "Fundamentals of Digital Logic with Verilog Design", 3rd Edition, McGraw-Hill (Unit V)

#### **Reference Books:**

- 1. Charles H. Roth, Jr, "Fundamentals of Logic Design", 4th Edition, Jaico Publishers.
- 2. ZviKohavi and NirajK.Jha, "Switching and Finite Automata Theory, 3rd Edition, Cambridge University Press, 2010.
- 3. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", 2<sup>nd</sup>Edition, Prentice Hall PTR.
- 4. D.P. Leach, A.P. Malvino, "Digital Principles and Applications", TMH, 7th Edition.

#### Course Outcomes(CO):

On completion of this course, student will be able to:

**CO1:** Understand the properties of Boolean algebra and logic operations (L2)

**CO2:** Understand the concepts of FSM (L2)

CO3: Apply techniques for minimization of Boolean functions (L3)

CO4: Analyze combinational and Sequential logic circuits. (L4)

**CO5:** Compare various Programmable logic devices. (L4)

CO6: Design and Model combinational and sequential circuits using HDLs. (L5, L6)

#### **ELECTRONIC DEVICES & CIRCUITS LAB**



## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

|                    |                                                    | <b>B. Tech ECE</b>    | - RG 23 Regula                | tion                                                  |                           |  |  |  |
|--------------------|----------------------------------------------------|-----------------------|-------------------------------|-------------------------------------------------------|---------------------------|--|--|--|
| <b>Course Code</b> | L:T:P                                              | Credits               | Exam. Marks                   | <b>Exam Duration</b>                                  | Course Type               |  |  |  |
| 23A0404P           | 0:0:3                                              | 1.5                   | CIE:30                        | 3 Hours                                               | PCC                       |  |  |  |
|                    |                                                    |                       | <b>SEE:70</b>                 |                                                       |                           |  |  |  |
|                    |                                                    | S                     | yllabus                       |                                                       |                           |  |  |  |
| LIST OF EXPE       | LIST OF EXPERIMENTS: (Execute any 12 experiments). |                       |                               |                                                       |                           |  |  |  |
| Note: All the exp  | periments shall b                                  | e implemente          | d using both Har              | dware and Software                                    | e.                        |  |  |  |
| 1. Verification    | of Volt- Ampere                                    | e characteristic      | s of a PN junctio             | on diode and find sta                                 | tic, dynamic and          |  |  |  |
| reverse resis      | tances of the diod                                 | le from the gra       | phs obtained.                 |                                                       |                           |  |  |  |
| 2. Design a ful    | l wave rectifier fo                                | or the given spe      | cifications with a            | nd without filters, and                               | 1 verify the given        |  |  |  |
| specification      | ns experimentally.                                 | Vary the load         | and find ripple fa            | ctor. Draw suitable g                                 | raphs.                    |  |  |  |
| 3. Verify vario    | us clipping and cl                                 | lamper circuits       | using PN junction             | a diode and draw the                                  | suitable graphs.          |  |  |  |
| 4. Design a Ze     | ener diode-based                                   | voltage regul         | <i>ator</i> against varia     | ations of supply and                                  | load. Verify the          |  |  |  |
| same from the      | he experiment.                                     |                       |                               |                                                       |                           |  |  |  |
| 5. Study and d     | raw the <i>output</i> a                            | nd <i>transfer</i> ch | aracteristics of M            | OSFET (Enhance m                                      | ode) in Common            |  |  |  |
| Source Conf        | figuration experin                                 | nentally. Find 7      | Threshold voltage             | <i>(V<sub>T</sub>), g<sub>m</sub>, &amp; K</i> from t | he graphs.                |  |  |  |
| 6. Study and d     | raw the <i>output</i> a                            | nd <i>transfer</i> ch | aracteristics of M            | OSFET (Depletion n                                    | node) or JFET in          |  |  |  |
| Common So          | ource Configuration                                | on experimenta        | lly. Find $I_{DSS}$ , $g_m$ , | & $V_P$ from the graph                                | 18.                       |  |  |  |
| 7. Verification    | of the input and                                   | d output chara        | cteristics of BJT             | in Common Emit                                        | ter configuration         |  |  |  |
| experimenta        | lly and find requi                                 | red <b>h</b> – parame | eters from the gra            | phs.                                                  |                           |  |  |  |
| 8. Study and       | draw the input a                                   | and output cha        | aracteristics of B            | JT in Common Ba                                       | use configuration         |  |  |  |
| experimenta        | lly and determine                                  | required $h - p$      | arameters from the            | he graphs.                                            |                           |  |  |  |
| 9. Study and d     | raw the Volt Am                                    | pere characteri       | stics of UJT and              | determine $\eta$ , $I_P$ , $I_v$ , $V$                | $P_{P}$ , & $Vv$ from the |  |  |  |
| experiment.        |                                                    |                       |                               |                                                       |                           |  |  |  |
| 10. Design and a   | analysis of voltage                                | e- divider bias/      | self-bias circuit u           | sing BJT.                                             |                           |  |  |  |
| 11. Design and a   | analysis of self-bi                                | as circuit using      | g MOSFET.                     |                                                       |                           |  |  |  |
| 12. Design a sui   | table circuit for sy                               | witch using MO        | OSFET/BJT.                    |                                                       |                           |  |  |  |
| 13. Design a sr    | nall signal ampli                                  | fier using MC         | OSFET (common                 | source) for the give                                  | en specifications.        |  |  |  |
| Draw the free      | equency response                                   | and find the ba       | ndwidth.                      |                                                       |                           |  |  |  |
| 14. Design a sm    | all signal amplifi                                 | er using BJT(c        | common emitter)               | for the given specific                                | cations. Draw the         |  |  |  |
| frequency re       | esponse and find t                                 | he bandwidth.         |                               |                                                       |                           |  |  |  |
| Tools / Equipme    | ent Required: So                                   | ftware Toollike       | e Multisim/ Pspice            | e or Equivalent,                                      |                           |  |  |  |
| DC Power supp      | lies, Multi meter                                  | rs, DC Amme           | ters, DC Voltme               | eters, AC Voltmeters                                  | s, CROs, all the          |  |  |  |
| required active de | evices.                                            |                       |                               |                                                       |                           |  |  |  |



## **GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY :: NELLORE** DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### **B.** Tech ECE – RG 23 Regulation

#### **Course Outcomes:**

After the completion of the course students will be able to:

**CO1:** Understand the characteristics and applications of basic electronic devices. (L2)

CO2: Plot the characteristics of electronic devices. (L3)

CO3: Analyze various biasing circuits and electronic circuits as amplifiers (L4).

CO4: Design MOSFET / BJT based amplifiers for the given specifications. (L5)

**CO5:** Simulate all circuits in PSPICE /Multisim. (L5).



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation DIGITAL DESIGN & SIGNAL SIMULATION LAB

| Course Code | L:T:P | Credits | Exam. Marks | Exam Duration | Course Type |  |
|-------------|-------|---------|-------------|---------------|-------------|--|
| 23A0405P    | 0:0:3 | 1.5     | CIE:30      | 3 Hours       | PCC         |  |
|             |       |         | SEE:70      |               |             |  |
| Syllabus    |       |         |             |               |             |  |

#### PART A

- 1. Design a simple combinational circuit with four variables and obtain minimal SOP expression and verify the truth table using Digital Trainer Kit.
- 2. Verification of functional table of 3 to 8-line Decoder /De-multiplexer
- 3. 4 variable logic function verification using 8 to1 multiplexer.
- 4. Design full adder circuit and verify its functional table.
- 5. Design a four-bit ring counter using D Flip–Flops/JK Flip Flop and verify output.
- 6. Design a four-bit Johnson's counter using D Flip-Flops/JK Flip Flops and verify output.

Note: Design the above Experiments by using both Hardware kits and Hardware Description Language

- 7. Verify the operation of 4-bit Universal Shift Register for different Modes of operation.
- 8. Draw the circuit diagram of MOD-8 ripple counter and construct a circuit using T-Flip-Flops and Test It with a low frequency clock and sketch the output waveforms.
- 9. Design MOD–8 synchronous counter using T Flip-Flop and verify the result and sketch the output waveforms.
- 10. (a) Draw the circuit diagram of a single bit comparator and test the output(b) Construct 7 Segment Display Circuit Using Decoder and 7 Segment LED and test it.

**Note:** Design and verify above Experiments by using Hardware Description Language **References:** 

1. M. Morris Mano, "Digital Design", 3rd Edition, PHI

## PART B

- 1. Write a program to generate various Signals and Sequences: Periodic and Aperiodic, Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc function.
- 2. Perform operations on Signals and Sequences: Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
- 3. Write a program to find the trigonometric & exponential Fourier series coefficients of a rectangular periodic signal. Reconstruct the signal by combining the Fourier series coefficients with appropriate weightings- Plot the discrete spectrum of the signal.
- 4. Write a program to find Fourier transform of a given signal. Plot its amplitude and phase spectrum.
- 5. Write a program to convolve two discrete time sequences. Plot all the sequences.
- 6. Write a program to find autocorrelation and cross correlation of given sequences.



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

- 7. Write a program to verify Linearity and Time Invariance properties of a given Continuous System.
- 8. Write a program to generate discrete time sequence by sampling a continuous time signal. Show that with sampling rates less than Nyquist rate, aliasing occurs while reconstructing the signal.
- 9. Write a program to find magnitude and phase response of first order low pass and high pass filter. Plot the responses in logarithmic scale.
- 10. Write a program to generate Complex Gaussian noise and find its mean, variance, Probability Density Function (PDF) and Power Spectral Density (PSD).
- 11. Generate a Random data (with bipolar) for a given data rate (say 10kbps). Plot the same for a time period of 0.2 sec.
- 12. To plot pole-zero diagram in S-plane of given signal/sequence and verify its stability.

Note: Any 10 experiments. All the experiments are to be simulated using MATLAB or equivalent software.

#### **References:**

1. Stephen J. Chapman, "MATLAB Programming for Engineers", Cengage, November 2012.

#### **Course Outcomes:**

After the completion of the course students will be able to:

**CO1:** Verify the truth tables of various logic circuits. (L2)

CO2: Understand how to simulate different types of signals and system response. (L2)

CO3: Design sequential and combinational logic circuits and verify their functionality. (L3, L4)

**CO4:** Analyze the response of different systems when they are excited by different signals and plot power spectral density of signals. (L4)

CO5: Generate different random signals for the given specifications. (L5)



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### **B. Tech ECE – RG 23 Regulation PYTHON PROGRAMMING**

| Course Code        | L:T:P:S                          | Credits  | Exam marks | Exam Duration | Course Type |  |  |  |
|--------------------|----------------------------------|----------|------------|---------------|-------------|--|--|--|
| 23A0510P           | 0510P 0:1:2:0 2 CIE:30<br>SEE:70 |          | 3 Hours    | SEC           |             |  |  |  |
| Course Objectives: |                                  |          |            |               |             |  |  |  |
| The main objectiv  | ves of the course                | e are to |            |               |             |  |  |  |

- Introduce core programming concepts of Python programming language.
- Demonstrate about Python data structures like Lists, Tuples, Sets and dictionaries
- Implement Functions, Modules and Regular Expressions in Python Programming and to create practical and contemporary applications using these

| Syllabus | Total Hours: 45 |
|----------|-----------------|
| Unit-I   | 9 Hrs           |

History of Python Programming Language, Thrust Areas of Python, Installing Anaconda Python Distribution, Installing and Using Jupyter Notebook. Parts of Python Programming Language: Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence and Associativity, Data Types, Indentation, Comments, Reading Input, Print Output, Type Conversions, the type () Function and Is Operator, Dynamic and Strongly Typed Language. Control Flow Statements: if statement, if-else statement, if...else, Nested if statement, while Loop, for Loop, continue and break Statements, Catching Exceptions Using try and except Statement.

#### Sample Experiments:

- 1. Write a program to find the largest element among three Numbers.
- 2. Write a Program to display all prime numbers within an interval
- 3. Write a program to swap two numbers without using a temporary variable.
- 4. Demonstrate the following Operators in Python with suitable examples.
- i) Arithmetic Operators ii) Relational Operators iii) Assignment Operators iv) Logical Operators v) Bit wise Operators vi) Ternary Operator vii) Membership Operators viii) Identity Operators
- 5. Write a program to add and multiply complex numbers
- 6. Write a program to print multiplication table of a given number.

|                    | Unit-II               |                     |       | 9       | ) Hr | S      |
|--------------------|-----------------------|---------------------|-------|---------|------|--------|
| Duilt In Eunstions | Commonly Head Medules | Eunstian Definition | لمعمد | Calling | the  | functi |

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the function, return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, \*args and \*\*kwargs, Command Line Arguments.

Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings.

Lists: Creating Lists, Basic List Operations, Indexing and Slicing in Lists, Built-In Functions Used on Lists, List Methods, del Statement.

#### Sample Experiments:

7. Write a program to define a function with multiple return values.



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

- 8. Write a program to define a function using default arguments.
- 9. Write a program to find the length of the string without using any library functions.
- 10. Write a program to check if the substring is present in a given string or not.
- 11. Write a program to perform the given operations on a list: additionii. insertioniii. slicing
- 12. Write a program to perform any 5 built-in functions by taking any list

| Unit -III     |          |             |           |     | 9 Hrs     |           |       |    |               |          |
|---------------|----------|-------------|-----------|-----|-----------|-----------|-------|----|---------------|----------|
| Dictionaries: | Creating | Dictionary, | Accessing | and | Modifying | key:value | Pairs | in | Dictionaries, | Built-In |

Functions Used on Dictionaries, Dictionary Methods, del Statement.

Tuples and Sets: Creating Tuples, Basic Tuple Operations, tuple() Function, Indexing and Slicing in Tuples, Built-In Functions Used on Tuples, Relation between Tuples and Lists, Relation between Tuples and Dictionaries, Using zip() Function, Sets, Set Methods, Frozenset.

#### Sample Experiments:

- 13. Write a program to create tuples (name, age, address, college) for at least two members and concatenate the tuples and print the concatenated tuples.
- 14. Write a program to count the number of vowels in a string (No control flow allowed).
- 15. Write a program to check if a given key exists in a dictionary or not.
- 16. Write a program to add a new key-value pair to an existing dictionary.
- 17. Write a program to sum all the items in a given dictionary.

9 Hrs

Files: Types of Files, Creating and Reading Text Data, File Methods to Read and Write Data, Reading and Writing Binary Files, Pickle Module, Reading and Writing CSV Files, Python os and os.path Modules.

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, Constructor Method, Classes with Multiple Objects, Class Attributes Vs Data Attributes, Encapsulation, Inheritance, Polymorphism.

#### Sample Experiments:

- 18. Write a program to sort words in a file and put them in another file. The output file should have only lower-case words, so any upper-case words from source must be lowered.
- 19. Python program to print each line of a file in reverse order.
- 20. Python program to compute the number of characters, words and lines in a file.
- 21. Write a program to create, display, append, insert and reverse the order of the items in the array.
- 22. Write a program to add, transpose and multiply two matrices.
- 23. Write a Python program to create a class that represents a shape. Include methods to calculate its area and perimeter. Implement subclasses for different shapes like circle, triangle, and square.

| Unit -V                                                                      | 9 Hrs                |
|------------------------------------------------------------------------------|----------------------|
| Introduction to Data Science: Functional Programming, JSON and XML in Python | , NumPy with Python, |
| Pandas.                                                                      |                      |

#### Sample Experiments:

24. Python program to check whether a JSON string contains complex object or not.



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

- 25. Python Program to demonstrate NumPy arrays creation using array () function.
- 26. Python program to demonstrate use of ndim, shape, size, dtype.
- 27. Python program to demonstrate basic slicing, integer and Boolean indexing.
- 28. Python program to find min, max, sum, cumulative sum of array
- 29. Create a dictionary with at least five keys and each key represent value as a list where this list contains at least ten values and convert this dictionary as a pandas data frame and explore the data through the data frame as follows:
  - a) Apply head () function to the pandas data frame
  - b) Perform various data selection operations on Data Frame
- 30. Select any two columns from the above data frame, and observe the change in one attribute with respect to other attribute with scatter and plot operations in matplotlib

#### Textbooks:

- 1. Stuart Russell and Peter Norvig, Artificial Intelligence A Modern Approach, 3rdEdition, Pearson Education.
- 2. Elaine Rich, Kevin Knight & Shivashankar B Nair, "Artificial Intelligence", 3<sup>rd</sup> Edition, McGraw Hill Education.

#### **Reference Books:**

- 1. Gowri shankar S, Veena A., Introduction to Python Programming, CRC Press.
- 2. Python Programming, S Sridhar, J Indumathi, V M Hariharan, 2<sup>nd</sup> Edition, Pearson, 2024
- 3. Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

#### **E-resources:**

- 1. https://www.coursera.org/learn/python-for-applied-data-science-ai
- 2. <u>https://www.coursera.org/learn/python?specialization=python#syllabus</u>

#### Course Outcomes(CO):

On completion of this course, student will be able to:

**CO1:** Showcase adept command of Python syntax, deftly utilizing variables, data types, control structures, functions, modules, and exception handling to engineer robust and efficient code solutions. (L4)

**CO2:** Apply Python programming concepts to solve a variety of computational problems (L3)

**CO3:** Understand the principles of object-oriented programming (OOP) in Python, including classes, objects, inheritance, polymorphism, and encapsulation, and apply them to design and implement Python programs (L3)

**CO4:** Proficient in using commonly used Python libraries and frameworks such as JSON, XML, NumPy, pandas (L2)

**CO5:** Exhibit competence in implementing and manipulating fundamental data structures such as lists, tuples, sets, dictionaries (L3)



#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation ENVIRONMENTAL SCIENCE

|                                                                                                  | Course Code                                                                                           | L:T:P:S | Credits | Exam marks | Exam Duration | Course Type  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------|---------|------------|---------------|--------------|--|--|
|                                                                                                  | 23A0109T                                                                                              | 2:0:0:0 | -       | CIE: 30    | -             | Audit Course |  |  |
| Course Objectives:                                                                               |                                                                                                       |         |         |            |               |              |  |  |
| •                                                                                                | To make the students to get awareness on environment.                                                 |         |         |            |               |              |  |  |
| •                                                                                                | To understand the importance of protecting natural resources, ecosystems for future generations an    |         |         |            |               |              |  |  |
|                                                                                                  | pollution causes due to the day to day activities of human life                                       |         |         |            |               |              |  |  |
| •                                                                                                | To save earth from the inventions by the engineers                                                    |         |         |            |               |              |  |  |
| Syllabus                                                                                         |                                                                                                       |         |         |            |               |              |  |  |
| Unit-I                                                                                           |                                                                                                       |         |         |            |               |              |  |  |
| Multidisciplinary Nature of Environmental Studies: - Definition, Scope and Importance - Need for |                                                                                                       |         |         |            |               |              |  |  |
| Public Awareness.                                                                                |                                                                                                       |         |         |            |               |              |  |  |
| N                                                                                                | Natural Resources : Renewable and non-renewable resources – Natural resources and associated problems |         |         |            |               |              |  |  |

- Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

#### Unit-II

**Ecosystems:** Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem.

**Biodiversity and its Conservation :** Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a megadiversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

#### Unit -III

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution



## **GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY :: NELLORE** DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### B. Tech ECE – RG 23 Regulation

- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

**Solid Waste Management:** Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

## Unit -IV

**Social Issues and the Environment:** From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

#### Unit -V

**Human Population and the Environment:** Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

**Field Work:** Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

#### Textbooks:

- 1. Textbook of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

#### **Reference Books:**

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited