

Г

GEETHANJALI INSTITUTE OF SCIENCE AND TECHNOLOGY (AUTONOMOUS) NELLORE-524137(A.P) INDIA

Electrical and Electronics Engineering

(B.TECH)

Course Structure (RG23)

Semester - 3							
SI.	Category	Course	Course Title	Hours per week			Credits
No.		Code		L	Т	P	С
1	BS	23A0012T	Numerical Methods And Complex Variables	3	0	0	3
2	HSMC	23A0021T	Universal Human Values	2	1	0	3
3	Engineering Science	23A0207T	Electromagnetic Field Theory	3	0	0	3
4	Professional Core	23A0208T	Electrical Circuit Analysis-II	3	0	0	3
5	Professional Core	23A0209T	DC Machines & Transformers	3	0	0	3
6	Professional Core	23A0210P	Electrical Circuit Analysis-II and Simulation Lab	0	0	3	1.5
7	Professional Core	23A0211P	DC Machines & Transformers Lab	0	0	3	1.5
8	Skill Enhancement Course	23A0517P	Data Structures	0	1	2	2
9	Audit Course	23A0109T	Environmental Science	2	0	0	-
	Total credits162820						

HoD

Dean of Academics

Principal

L	Τ	P	С
3	0	0	3

(23A0012T) NUMERICAL METHODS AND COMPLEX VARIABLES

Course Outcomes:

COs	Statements	Blooms level
CO1	Apply numerical methods to solve algebraic and transcendental equations, form the Interpolating polynomials and fitting of curve.	L2, L3
CO2	Solve the differential equations numerically	L3, L5
CO3	Understand limit, continuity and differentiation of complex variables Cauchy Riemann equations ,analytic functions & complex amp; properties.	L3
CO4	Understand Cauchy theorem ,Cauchy integral formula and apply these to evaluate complex integrals.	L2, L3
CO5	Find residues and evaluate complex integrals by using residue theorem.	L3, L5

UNITI Solution of Algebraic & amp; Transcendental Equations and Interpolation

Introduction-Bisection Method, Regula-falsi method and Newton Raphson method. Finite differences-Newton's forward and backward interpolation formulae – Lagrange's formulae.Curve fitting: Fitting of straight line, second-degree and Exponential curve by method of least squares.

UNIT II Solution of Initial value problems to Ordinary differential equations

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Euler's and modified Euler's methods-Runge-Kutta methods (second and fourthorder).

UNIT III: Complex Variable – Differentiation

Introduction to functions of complex variable-concept of Limit & amp; continuity-Differentiation, Cauchy- Riemann equations, analytic functions harmonic functions, finding harmonic conjugate-construction of analytic function by Milne Thomson method..

UNIT IV Complex Variable – Integration

Line integral-Contour integration, Cauchy's integral theorem (Simple Case), Cauchy Integral formula, Power series expansions: Taylor's series, zeros of analytic functions, singularities, Laurent's series.

UNIT V Residues

Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine.

Textbooks:

- 1. B.S.Grewal, HigherEngineeringMathematics, KhannaPublishers, 2017, 44th Edition
- 2. S S Sastry, Introductory Methods of Numerical Analysis, PHI Learning Private Limited.

ReferenceBooks:

- 1. ErwinKreyszig, AdvancedEngineeringMathematics, JohnWiley&Sons, 2018, 10th Edition.
- 2. B.V.Ramana, Higher Engineering Mathematics, by Mc Graw Hill publishers
- R.K.JainandS.R.K.Iyengar, AdvancedEngineeringMathematics,AlphaScienceInternationalLtd.,2021 5th Edition(9th reprint).

Online Learning Resources:

- 1. https://onlinecourses.nptel.ac.in/noc17_ma14/preview
- 2. https://onlinecourses.nptel.ac.in/noc20_ma50/preview
- 3. http://nptel.ac.in/courses/111105090

L	Τ	P	C
2	1	0	3

(23A0021T) UNIVERSAL HUMAN VALUES

Course Objectives:

- To help the students appreciate the essential complementary between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behaviour and mutually enriching interaction with Nature.

Course Outcomes:

- Define the terms like Natural Acceptance, Happiness and Prosperity (L1, L2)
- Identify one's self, and one's surroundings (family, society nature) (L1, L2)
- Apply what they have learnt to their own self in different day-to-day settings in real life (L3)
- Relate human values with human relationship and human society. (L4)
- Justify the need for universal human values and harmonious existence (L5)
- Develop as socially and ecologically responsible engineers (L3, L6)

UNIT I INTRODUCTION TO VALUE EDUCATION

Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education)

Understanding Value Education

Practice Session PS1 Sharing about Oneself

self-exploration as the Process for Value Education

Continuous Happiness and Prosperity – the Basic Human Aspirations

Exploring Human Consciousness

Happiness and Prosperity – Current Scenario

Method to Fulfill the Basic Human Aspirations

Exploring Natural Acceptance

Practice Sessions for UNIT I – Introduction to Value Education

PS1 Sharing about Oneself

PS2 Exploring Human Consciousness

PS3 Exploring Natural Acceptance

UNIT II HARMONY IN THE HUMAN BEING

Understanding Human being as the Co-existence of the self and the body. Distinguishing between the Needs of the self and the body Exploring the difference of Needs of self and body. The body as an Instrument of the self Understanding Harmony in the self Exploring Sources of Imagination in the self Harmony of the self with the body Programme to ensure self-regulation and Health Exploring Harmony of self with the body Practice Sessions for UNIT II – Harmony in the Human Being PS4 Exploring the difference of Needs of self and body PS5 Exploring Sources of Imagination in the self PS6 Exploring Harmony of self with the body

UNIT III HARMONY IN THE FAMILY AND SOCIETY

Harmony in the Family – the Basic Unit of Human Interaction Trust– the Foundational Value in Relationship Exploring the Feeling of Trust Respect – as the Right Evaluation Exploring the Feeling of Respect Other Feelings, Justice in Human-to-Human Relationship Understanding Harmony in the Society Vision for the Universal Human Order Exploring Systems to fulfil Human Goal Practice Sessions for UNIT III – Harmony in the Family and Society PS7 Exploring the Feeling of Trust PS8 Exploring the Feeling of Respect PS9 Exploring Systems to fulfil Human Goal

UNIT IV HARMONY IN THE NATURE/EXISTENCE

Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Exploring the Four Orders of Nature Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exploring Co-existence in Existence. Practice Sessions for UNIT IV – Harmony in the Nature (Existence) PS10 Exploring the Four Orders of Nature PS11 Exploring Co-existence in Existence

UNIT V IMPLICATIONS OF THE HOLISTIC UNDERSTANDING – A LOOK AT PROFESSIONAL ETHICS

Natural Acceptance of Human Values Definitiveness of (Ethical) Human Conduct Exploring Ethical Human Conduct A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Competence in Professional Ethics Exploring Humanistic Models in Education Holistic Technologies, Production Systems and Management Models-Typical Case Studies

GEETHANJALI INSTITUTE OF SCIENCE AND TECHNOLOGY::NELLORE

Strategies for Transition towards Value-based Life and Profession

Exploring Steps of Transition towards Universal Human Order

Practice Sessions for UNIT V – Implications of the Holistic Understanding – a Look at Professional Ethics

PS12 Exploring Ethical Human Conduct

PS13 Exploring Humanistic Models in Education

PS14 Exploring Steps of Transition towards Universal Human Order

Textbook

1. R R Gaur, R Asthana, G P Bagaria, A Foundation Course in Human Values and Professional Ethics, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1

2. R R Gaur, R Asthana, G P Bagaria, Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books

- 1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

Online Resources:

- 1. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%201-</u> <u>Introduction%20to%20Value%20Education.pdf</u>
- 2. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%202-</u> <u>Harmony%20in%20the%20Human%20Being.pdf</u>
- 3. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%203-</u> <u>Harmony%20in%20the%20Family.pdf</u>
- 4. <u>https://fdp-si.aicte-india.org/UHV%201%20Teaching%20Material/D3-</u> S2%20Respect%20July%2023.pdf
- 5. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%205-</u> <u>Harmony%20in%20the%20Nature%20and%20Existence.pdf</u>
- 6. <u>https://fdp-si.aicte-india.org/download/FDPTeachingMaterial/3-days%20FDP-SI%20UHV%20Teaching%20Material/Day%203%20Handouts/UHV%203D%20D3-S2A%20Und%20Nature-Existence.pdf</u>

- 7. <u>https://fdp-si.aicte-</u> india.org/UHV%20II%20Teaching%20Material/UHV%20II%20Lecture%2023-25%20Ethics%20v1.pdf
- 8. <u>https://www.studocu.com/in/document/kiet-group-of-institutions/universal-human-values/chapter-5-holistic-understanding-of-harmony-on-professional-ethics/62490385</u>
- 9. https://onlinecourses.swayam2.ac.in/aic22_ge23/preview

L	Τ	P	С
3	0	0	3

(23A0207T) ELECTROMAGNETIC FIELD THEORY

Course Outcomes:

СО	Statements	Blooms Level
CO1	Remember the concepts of vector algebra, vector calculus, various fundamental laws, self and mutual inductance	L1
CO2	Understand the concepts of electrostatics, conductors, dielectrics, capacitance, magneto statics, magnetic fields, time varying fields, self and mutual inductances	L2
CO3	Apply vector calculus, Coulomb's law, Gauss's law, Ohm's law in point form, Biot Savart's law, Ampere's circuital law, Maxwell's third equation, self and mutual inductances Faraday's laws, Maxwell's fourth equation, Poynting theorem to solve various numerical problems	-L3
CO4	Analyze vector calculus, electrostatic fields, behavior of conductor in electric filed, Biot-Savart's law and its applications	L4
CO5	Analyze magnetic force, moving charges in a magnetic field, self-inductance of different cables, mutual inductance between different wires and time varying fields	L4

UNIT I

Vector Analysis:

Vector Algebra: Scalars and Vectors, Unit vector, Vector addition and subtraction, Position and distance vectors, Vector multiplication, Components of a vector.

Coordinate Systems: Rectangular, Cylindrical and Spherical coordinate systems.

Vector Calculus: Differential length, Area and Volume.Del operator, Gradient of a scalar, Divergence of a vector and Divergence theorem (definition only). Curl of a vector and Stoke's theorem (definition only), Laplacian of a scalar

Electrostatics:

Coulomb's law and Electric field intensity (EFI) – EFI due to Continuous charge distributions (line and surface charge), Electric flux density, Gauss's law (Maxwell's first equation, $A.\overline{D} = \rho_v$), Applications of Gauss's law, Electric Potential, Work done in moving a point charge in an electrostatic field (second Maxwell's equation for static electric fields, $A \times \overline{E} = 0$), Potential gradient, Laplace's and Poison's equations.

UNIT II

Conductors – Dielectrics and Capacitance:

Behaviour of conductor in Electric field, Electric dipole and dipole moment – Potential and EFI due to an electric dipole, Torque on an Electric dipole placed in an electric field, Current density-conduction and convection current densities, Ohm's law in point form, Behaviour of conductors in an electric field, Polarization, dielectric constant and strength, Continuity equation and relaxation time, Boundary conditions between conductor to dielectric, dielectric to dielectric and conductor to free space, Capacitance of parallel plate, coaxial and spherical capacitors, Energy stored and density in a static electric field, Coupled and decoupled capacitors.

UNIT III

Magneto statics, Ampere's Law and Force in magnetic fields:

Biot-Savart's law and its applications viz. Straight current carrying filament, circular, square, rectangle and solenoid current carrying wire – Magnetic flux density and Maxwell's second Equation (\overline{A} . \overline{B} = 0), Ampere's circuital law and its applications viz. MFI due to an infinite sheet, long filament, solenoid, toroidal current carrying conductor, point form of Ampere's circuital law, Maxwell's third equation ($\overline{A} \times \overline{H} = \rightarrow J$).

Magnetic force, moving charges in a magnetic field – Lorentz force equation, force on a current element in a magnetic field, force on a straight and a long current carrying conductor in a magnetic field, force between two straight long and parallel current carrying conductors, Magnetic dipole, Magnetic torque, and moment.

UNIT IV

Self and mutual inductance:

Self and mutual inductance – determination of self-inductance of a solenoid, toroid, coaxial cable and mutual inductance between a straight long wire and a square loop wire in the same plane – Energy stored and energy density in a magnetic field.

UNIT V

Time Varying Fields:

Faraday's laws of electromagnetic induction, Maxwell's fourth equation $(A \times E^{\rightarrow} = -\frac{\partial B}{\partial r})$,

integral and point forms of Maxwell's equations, statically and dynamically induced EMF, Displacement current, Modification of Maxwell's equations for time varying fields, Poynting theorem and Poynting vector.

Textbooks:

- 1. "Elements of Electromagnetics" by Matthew N O Sadiku, Oxford Publications, 7th edition, 2018.
- "Engineering Electromagnetics" by William H. Hayt& John. A. Buck Mc. Graw-Hill, 7th Editon.2006.

Reference Books:

- 1. "Introduction to Electro Dynamics" by D J Griffiths, Prentice-Hall of India Pvt. Ltd, 2nd edition.
- 2. "Electromagnetic Field Theory" by Yaduvir Singh, Pearson India, 1st edition, 2011.
- 3. "Fundamentals of Engineering Electromagnetics" by Sunil Bhooshan, Oxford University Press, 2012.
- 4. Schaum's Outline of Electromagneticsby Joseph A. Edminister, MahamoodNavi, 4th Edition,2014.

Web Resources:

- 1. https://archive.nptel.ac.in/courses/108/106/108106073/
- 2. https://nptel.ac.in/courses/117103065

L	Τ	P	С
3	0	0	3

(23A0208T) ELECTRICAL CIRCUIT ANALYSIS-II

Course Outcomes:

CO	Statements	Blooms Level
CO1	Remember the concepts of Laplace transforms, formulation of various circuit topologies (R, L and C components) and basic filters	L1
CO2	Understand three phase balanced and unbalanced circuits, different circuit configurations and it's mathematical modeling, network parameters and various filters	L2
CO3	Apply Laplace transforms to solve various electrical network topologies and filter design concepts	L3
CO4	Analyze three phase circuits, transient response of various network topologies, electric circuits with periodic excitations and filter characteristics	L4
CO5	Design suitable electrical circuits and various filters for different applications	L5

UNIT I

Analysis of three phase balanced circuits:

Phase sequence, star and delta connection of sources and loads, relation between line and phase quantities, analysis of balanced three phase circuits, measurement of active and reactive power.

Analysis of three phase unbalanced circuits:

Loop method, Star-Delta transformation technique, two-wattmeter method for measurement of three phase power.

UNIT II

Laplace transforms – Definition and Laplace transforms of standard functions– Shifting theorem – Transforms of derivatives and integrals, Inverse Laplace transforms and applications.

Transient Analysis: Transient response of R-L, R-C and R-L-C circuits (Series and parallel combinations) for D.C. and sinusoidal excitations – Initial conditions - Solution using differential equation approach and Laplace transform approach.

UNIT III

Network Parameters: Impedance parameters, Admittance parameters, Hybrid parameters, Transmission (ABCD) parameters, conversion of Parameters from one form to other, Conditions for Reciprocity and Symmetry, Interconnection of Two Port networks in Series, Parallel and Cascaded configurations- problems.

UNIT IV

Analysis of Electric Circuits with Periodic Excitation: Fourier series and evaluation of Fourier coefficients, Trigonometric and complex Fourier series for periodic waveforms, Application to Electrical Systems – Effective value and average value of non-sinusoidal periodic waveforms, power factor, effect of harmonics

UNIT V

Filters: Classification of filters-Low pass, High pass, Band pass and Band Elimination filters, Constant-k filters -Low pass and High Pass, Design of Filters.

Textbooks:

- 1. Engineering Circuit Analysis, William Hayt and Jack E. Kemmerly, 8th Edition McGraw-Hill, 2013
- 2. Fundamentals of Electric Circuits, Charles K. Alexander, Mathew N. O. Sadiku, 3rd Edition, Tata McGraw-Hill, 2019

Reference Books:

- 1. Network Analysis, M. E. Van Valkenburg, 3rd Edition, PHI, 2019.
- 2. Network Theory, N. C. Jagan and C. Lakshminarayana, 1st Edition, B. S. Publications, 2012.
- 3. Circuits and Networks Analysis and Synthesis, A. Sudhakar, Shyam Mohan S. Palli, 5th Edition, Tata McGraw-Hill, 2017.
- 4. Engineering Network Analysis and Filter Design (Including Synthesis of One Port Networks)- Durgesh C. KulshreshthaGopal G. Bhise, Prem R. Chadha ,Umesh Publications 2012.
- 5. Circuit Theory: Analysis and Synthesis, A. Chakrabarti, DhanpatRai& Co., 2018, 7th Revised Edition.

Web Resources:

- 1. https://archive.nptel.ac.in/courses/117/106/117106108/
- 2. https://archive.nptel.ac.in/courses/108/105/108105159/

L	Τ	P	С
3	0	0	3

(23A0209T) DC MACHINES & TRANSFORMERS

Course Outcomes:

СО	Statements	Blooms
		Level
CO1	Understand the process of voltage build-up in DC generators and characteristics.	L2
CO2	Understand the process of torque production, starting and speed control of DC motors and illustrate their characteristics.	L2
CO3	Obtain the equivalent circuit of single-phase transformer, auto transformer and determine its efficiency & regulation.	L3
CO4	Apply various testing methods for transformers and speed control of DC motors	L3
CO5	Analyze various configurations of three-phase transformers.	L4

UNIT I

DC Generators:

Construction and principle of operation of DC machines – EMF equation for generator – Excitation techniques– characteristics of DC generators –applications of DC Generators, Back-emf and torque equations of DC motor – Armature reaction and commutation, Applications.

UNIT II

Starting, Speed Control and Testing of DC Machines:

Characteristics of DC motors – losses and efficiency – applications of DC motors. Necessity of a starter – starting by 3-point and 4-point starters – speed control by armature voltage and field current control – testing of DC machines – brake test, Swinburne's test –Hopkinson's test–Field Test.

UNIT III

Single-phase Transformers:

Introduction to single-phase Transformers (Construction and principle of operation)–emf equation – operation on no-load and on load –lagging, leading and unity power factors loads –phasor diagrams– equivalent circuit –regulation – losses and efficiency – effect of variation of frequency and supply voltage on losses – all day efficiency, Applications.

UNIT IV

Testing of Transformers:

Open Circuit and Short Circuit tests – Sumpner's test – separation of losses— Parallel operation with equal and unequal voltage ratios– auto transformer – equivalent circuit – comparison with two winding transformers.

UNIT V

Three-Phase Transformers:

Polyphase connections- Y/Y, Y/ Δ , Δ /Y, Δ / Δ , open Δ and Vector groups – third harmonics in phase voltages– Parallel operation–three winding transformers- transients in switching –off load and on load tap changers–Scott connection.

Textbooks:

- 1. Electrical Machinery by Dr. P S Bimbhra, 7th edition, Khanna Publishers, New Delhi,1995.
- 2. Performance and analysis of AC machines by M.G. Say, CBS, 2002.

Reference Books:

- 1. Electrical Machines by D. P.Kothari, I .J .Nagarth, McGraw Hill Publications, 5th edition
- 2. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2011.
- 3. Generalized Theory of Electrical Machines by Dr. P S Bimbhra, 7th Edition, Khanna Publishers, 2021.
- 4. Theory & Performance of Electrical Machines by J.B.Gupta, S.K.Kataria& Sons,2007.
- 5. Electric Machinery by Fitzgerald, A.E., Kingsley, Jr., C., & Umans, S. D, 7th edition, McGraw-Hill Education, 2014.

Web Resources:

- 1. nptel.ac.in/courses/108/105/108105112
- 2. nptel.ac.in/courses/108/105/108105155

L	Τ	P	С
0	0	3	1.5

(23A0210P) ELECTRICAL CIRCUIT ANALYSIS-II AND SIMULATION LAB

Course Outcomes:

СО	Statements	Blooms Level
CO1	Understand the power calculations in three phase circuits.	L2
CO2	Analyze the time response of given network.	L4
CO3	Determination of two port network parameters.	L4
CO4	Simulate and analyze electrical circuits using software tools	L4
CO5	Apply various theorems to solve different electrical networks using simulation tools	L3

List of Experiments:

Any 10 of the following experiments are to be conducted:

- 1. Measurement of Active Power and Reactive Power for balanced loads.
- 2. Measurement of Active Power and Reactive Power for unbalanced loads.
- 3. Determination of Z and Y parameters.
- 4. Determination of ABCD and hybrid parameters
- 5. Verification of Kirchhoff's current law and voltage law using simulation tools.
- 6. Verification of mesh and nodal analysis using simulation tools.
- 7. Verification of super position and maximum power transfer theorems using simulation tools.
- 8. Verification of Reciprocity and Compensation theorems using simulation tools.
- 9. Verification of Thevenin's and Norton's theorems using simulation tools.
- 10. Verification of series and parallel resonance using simulation tools.
- 11. Simulation and analysis of transient response of RL, RC and RLC circuits.
- 12. Verification of self-inductance and mutual inductance by using simulation tools.

	L	Τ	P	C
	0	0	3	1.5

(23A0211P) DC MACHINES & TRANSFORMERS LAB

Course Outcomes:

CO	Statements	Blooms Level
CO1	Demonstrate starting and speed control methods of DC Machines.	L2
CO2	Apply theoretical concepts to determine the performance characteristics of DC Machines.	L3
CO3	Analyze the parallel operation of single phase transformers	L4
CO4	Determine the performance parameters of single-phase transformer.	L3
CO5	Analyze the performance analysis of transformers using various tests	L4

List of Experiments:

Any 10 of the following experiments are to be conducted:

- 1. Speed control of DC shunt motor by Field Current and Armature Voltage Control.
- 2. Brake test on DC shunt motor- Determination of performance curves.
- 3. Swinburne's test Predetermination of efficiencies as DC Generator and Motor.
- 4. Hopkinson's teston DC shunt Machines.
- 5. Load test on DC compound generator-Determination of characteristics.
- 6. Load test on DC shunt generator-Determination of characteristics.
- 7. Fields test on DC series machines-Determination of efficiency.
- 8. Brake test on DC compound motor-Determination of performance curves.
- 9. OC & SC tests on single phase transformer.
- 10. Sumpner's test on single phase transformer.
- 11. Scott connection of transformers.
- 12. Parallel operation of Single-phase Transformers.
- 13. Separation of core losses of a single-phase transformer.

Reference:

1. https://ems-iitr.vlabs.ac.in/List%20of%20experiments.html

L	Т	P	С
0	1	2	2

(23A0517P) DATA STRUCTURES (Skill Enhancement Course)

Course Outcomes:

СО	Statements	Blooms Level
CO1	Understand the role of data structures in organizing and accessing data	L2
CO2	Design, implement and apply linked lists for dynamic data storage	L3
CO3	Develop applications using stacks and queues	L5
CO4	Design and implement algorithms for operations on binary trees and binary search trees	L5
CO5	Design novel solutions to small scale programming challenges involving data structures such as stacks, queues, Trees	L5

UNIT I

Introduction to Data Structures: Definition and importance of Data structures, Abstract data types (ADTs) and its specifications, **Arrays**: Introduction, 1-D, 2-D Arrays, accessing elements of array, Row Major and Column Major storage of Arrays, **Searching Techniques**: Linear & Binary Search, **Sorting Techniques**: Bubble sort, Selection sort, Quick sort.

Sample experiments:

- 1. Program to find min & max element in an array.
- 2. Program to implement matrix multiplication.
- 3. Find an element in given list of sorted elements in an array using Binary search.
- 4. Implement Selection and Quick sort techniques.

UNIT II

Linked Lists: Singly linked lists: representation and operations, doubly linked lists and circular linked lists, Comparing arrays and linked lists, Applications of linked lists.

Sample experiments:

- 1. Write a program to implement the following operations.
 - a. Insert b. Deletion c. Traversal
- 2. Write a program to store name, roll no, and marks of students in a class using circular double linked list.
- 3. Write a program to perform addition of given two polynomial expressions using linked list.

UNIT III

Stacks: Introduction to stacks: properties and operations, implementing stacks using arrays and linked lists, Applications of stacks in expression evaluation, backtracking, reversing list etc.

Sample experiments:

- 1. Implement stack operations using
 - a. Arrays b. Linked list
- 2. Convert given infix expression into post fix expression using stacks.
- 3. Evaluate given post fix expression using stack.

GEETHANJALI INSTITUTE OF SCIENCE AND TECHNOLOGY::NELLORE

4. Write a program to reverse given linked list using stack.

UNIT IV

Queues: Introduction to queues: properties and operations, Circular queues, implementing queues using arrays and linked lists, Applications of queues scheduling, etc.

Deques: Introduction to deques (double-ended queues), Operations on deques and their applications.

Sample experiments:

- 1. Implement Queue operations using
- a. Arrays b. Linked list
- 2. Implement Circular Queue using
- a. Arrays b. Linked list
- 3. Implement Dequeue using linked list.

UNIT V

Trees: Introduction to Trees, Binary trees and traversals, Binary Search Tree – Insertion, Deletion & Traversal

Sample experiments:

- 1. Implement binary tree traversals using linked list.
- 2. Write program to create binary search tree for given list of integers. Perform in-order traversal of the tree. Implement insertion and deletion operations.

Textbooks:

- 1. Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition.
- 2. Fundamentals of data structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed, Silicon Press, 2008

Reference Books:

- 1. Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders
- 2. C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft
- 3. Problem Solving with Algorithms and Data Structures by Brad Miller and David Ranum
- 4. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- 5. Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick

L	Т	P	C
2	0	0	0

(23A0109T) ENVIRONMENTAL SCIENCE

Course Objectives:

- To make the students to get awareness on environment.
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

UNIT I

Multidisciplinary Nature of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources : Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

UNIT II

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem.
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation : Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT III

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management:floods, earthquake, cyclone and landslides.

UNIT IV

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT V

Human Population and the Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Textbooks:

- 1. Textbook of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

References:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.