

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE (AUTONOMOUS)

NELLORE-524317 (A.P) INDIA

B.TECH IN MECHANICAL ENGINEERING (ACCREDITATED BY NBA) COURSE STRUCTURE AND SYLLABI UNDER RG 22 REGULATIONS

DEPARTMENT VISION

To evolve as a prospective learning centre producing competent Mechanical Engineers to fulfil the ever changing needs of society and industry demands

DEPARTMENT MISSION

- **DM1:** To Impart comprehensive knowledge and experience in Mechanical Engineering domain through the effective implementation of Teaching-Learning methodologies
- **DM₂:** To promote the culture of Interdisciplinary learning and facilitate Industrial training to resolve global Engineering issues
- **DM₃:** To Impart training on modern drafting and analysis software sharpening computational capabilities and promoting higher studies
- **DM4:** To Initiate Industry-Institute Interface facilitating skill enhancement keeping pace with emerging industrial trends
- **DM**₅ To Infuse moral and ethical values to groom environmentally conscious and socially responsible technocrats with professional integrity.

Program Educational Objectives (PEOs)

- **PEO1:** Examine and Analyze Mechanical Engineering problems and provide sustainable solutions.
- PEO2: Pursue successful professional career in industry, academia or research.
- **PEO3:** Engage in continuous learning to keep abreast of emerging technologies with a sense of professional commitment and ethics.
- **PEO4:** Contribute in multi-disciplinary teams through effective inter personal skills.

Program Outcomes

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

- **PSO1 Professional Skills:** Apply the knowledge of materials and manufacturing principles to plan, design and monitor the production operations of an Industry.
- **PSO2 Design Skills:** Employ the governing laws of Thermodynamics, Heat transfer and Refrigeration & Air Conditioning to design and develop Thermo Fluid systems.

RG22 Regulations

GEETHANJALI INSTITUTE OF SCIENCE AND TECHNOLOGY (AUTONOMOUS) NELLORE – 524137 (A.P) INDIA

B.TECH Mechanical Engineering Course Structure (RG22)

Semester 0

Induction Program: 3 weeks (Common for All Branches of Engineering)

S.No	Course No	Course	Category	L-T-P-C
		Name		
1		Physical ActivitiesSports, Yoga and Meditation, Plantation	MC	0-0-6-0
2		Career Counseling	MC	2-0-2-0
3		Orientation to all branches—career options, tools, etc.	MC	3-0-0-0
4		Orientation on admitted Branch- corresponding labs, tools and platforms	EC	2-0-3-0
5		Proficiency Modules & Productivity Tools	ESC	2-1-2-0
6		Assessment on basic aptitude and mathematical skills	MC	2-0-3-0
7		Remedial Training in Foundation Courses	MC	2-1-2-0
8		Human Values & Professional Ethics	MC	3-0-0-0
9		Communication Skills—focus on Listening, Speaking, Reading, Writing skills	BSC	2-1-2-0
10		Concepts of Programming	ESC	2-0-2-0

GEETHANJALI INSTITUTE OF SCIENCE AND TECHNOLOGY (AUTONOMOUS) NELLORE – 524137 (A.P) INDIA

B.TECH Mechanical Engineering Course Structure (RG22)

Semester - 1 (Theory-5, Lab-3)							
Sl.	Category	Course	Course Title	Hours per week		Credits	
110.		Coue		L	Т	P	С
1	BSC	22A0001T	Linear Algebra and Calculus	2	1	0	3
2	BSC	22A0007T	Engineering Chemistry	3	0	0	3
3	ESC	22A0518T	C-Programming & Data Structures	3	0	0	3
4	ESC	22A0203T	Basic Electrical & Electronics Engineering	3	0	0	3
5	ESC (Lab)	22A0304P	Engineering Workshop Lab	0	0	3	1.5
6	ESC (Lab)	22A0502P	IT Workshop Lab	0	0	3	1.5
7	BSC (Lab)	22A0012P	Engineering Chemistry Lab	0	0	3	1.5
8	ESC (Lab)	22A0519P	C-Programming & Data Structures Lab	0	0	3	1.5
9	ESC (Lab)	22A0204P	Basic Electrical & Electronics Engineering Lab	0	0	3	1.5
			Te	otal cre	edits		19.5

Category	Credits
Basic Science Course (BSC)	7.5
Engineering Science Course (ESC)	12
Total	19.5

	Linear Algebra & Calculus							
Course Code	L:T:P:S	Credits	Exam marks	Exam Dura	ntion	Course Type		
22A0001T	2: 1:0 :0	3	CIE:30 SEE:70	3 Hours	5	BSC		
Course O	bjectives:							
This course wil	This course will illuminate the students in the concepts of calculus and linear algebra. To							
equip the stude	ents with star	ndard concept	s and tools at an	intermediat	te to	advanced level		
mathematics to	develop the	confidence and	l ability among th	e students to	o han	ile various real		
world problems	and their app	lications.						
Syllabus					Tota	l Hours:45		
Unit - I		I	Matrices		9 Hr	S		
Rank of a matr	ix by echelor	n form, norma	l form. Solving s	ystem of hor	moger	neous and non-		
homogeneous eo	quations linea	r equations. A	pplications: Findin	ng the curren	t in el	ectrical circuits		
Eigen values and	d Eigenvector	rs and their pro	operties, Cayley- H	Iamilton theo	orem	(without proof),		
finding inverse	and power of	f a matrix by	Cayley-Hamilton	n theorem,	diago	nalisation of a		
matrix.				1				
Unit - II		Mean V	alue Theorems		9 Hr	S		
Rolle's Theoren	n (Without Pr	oof), Lagrange	s mean value the	orem (Witho	ut Pro	of), Cauchy's		
mean value theo	orem (Withou	t Proof), relate	d problems, Taylo	r's and Macl	aurin	theorems		
with remainders	(without pro	of) - related pr	oblems, Taylor's a	and Maclauri	n seri	es (without		
proof) Expansio	ns of functio	ns by Taylors	and Maclaurin's s	series.				
Unit - III		Multiva	riable Calculus		9 Hr	S		
Partial derivativ minima of funct	es, total deri	vatives, chain ariables, metho	rule, change of va od of Lagrange mu	ariables, Jacc Iltipliers.	obians	, maxima and		
Unit - IV		Multi	ple Integrals		9 Hr	S		
Double integral	s, change of	order of inte	gration, change of	of variables.	Eval	uation of triple		
integrals, chang	e of variable	s between Car	tesian, cylindrical	and spherica	al pol	ar co-ordinates.		
Finding areas ar	d volumes us	sing double and	l triple integrals.					
Unit - V		Beta and	Gamma functions	5	9 Hr	S		
Beta and Gan	nma function	ns and their	properties, relat	ion betweer	ı bet	a and gamma		
functions,evalua	tion of defini	te integrals usi	ing beta and gamn	na functions.		_		
Course Outcomes (CO):								
 On completion of this course, student will be able to Solving the system of linear equations, find the eigen values and eigenvectors and use this information to facilitate the calculation of matrix characteristics. Translate the given function as series of Taylor's and Maclaurin's with remainders, analyze the behavior of functions by using mean value theorems. Acquire the Knowledge maxima and minima functions of several variables. Utilize Jacobian of a coordinate transformation to deal with the problems in change of variables. 								

- Apply multiple integration techniques in evaluating areas and volumes bounded by the region.
- Understand beta and gamma functions and its relations, conclude the use of special function in evaluating definite integrals.

Textbooks:

- 1. Higher Engineering Mathematics, B. S. Grewal, 44/e, Khanna Publishers, 40 edition-2017.
- 2. Linear Algebra & Calculus by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad S. Chand publication 2019.

Reference Books:

- 1. "Advanced Engineering Mathematics", Erwin Kreyszig, Wiley India 2016.
- 2. B.V.Ramana, "Higher Engineering Mathematics", Mc Graw Hill publishers 2012.
- 3. Mathematical Methods by T.K.V. Iyengar, B.Krishna Gandhi, S. Ranganatham and M.V.S.S.N. Prasad, S. Chand Publications 2015.

		Enginee	ering Chemistry			
	LTDG	(Commo	on to ME and CE)		<u>с</u> т	
	L:1:P:5		Exam marks	Exam Duration	Course Type	
22A00071	3:0:0:0	3	CIE:30 SEE: /0	3 Hours	BSC	
Prerequisi	te: Student	should kno	ow fundamental co Chemistry	oncepts about Engi	neering	
Course Objecti This course will ➤ To famil ➤ To impar ➤ To train and ceme	 Course Objectives: This course will enable students to: To familiarize engineering chemistry and its applications To impart the concept of soft and hard waters, softening methods of hard water To train the students on the principles and applications of electrochemistry, polymers, and cement 					
Syllabus					Total Hours: 48	
	Unit	I - Water a	and its treatment		10	
Introduction - hardness of water - causes of hardness - types of hardness: temporary and permanent - expression and units of hardness - Estimation of hardness of water by EDTA method. Numerical problems, Boiler troubles-Sludges, scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning - Softening of water : Zeolite process, ion- exchange process, Desalination of water - Reverse osmosis and Electro dialysis						
	Unit–II	Electrocher	nistry and Applic	ations	10	
Electrodes – concepts, electrochemical cell, Nernst equation, cell potential calculations. Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (Ni Cad),and lithium ion batteries- working of the batteries including cell reactions; Fuel cells: hydrogen-oxygen, methanol-oxygen fuel cells – working of the cells. Corrosion: Introduction to corrosion, electrochemical theory of corrosion, metal oxide						
galvanic corrosion. Factors affecting the corrosion, cathodic and anodic protection						
electroplating and electro less plating (Nickel and Copper).						
		Unit–III	Polymers		10	
Introduction to polymers, functionality of monomers, Types of polymerization- Addition, condensation and coordination polymerization with Mechanism. Plastics-Definition and characteristics- thermoplastic and thermosetting plastics. Preparation, properties and applications of PVC and Nylons. Rubbers- Natural rubber and its vulcanization - compounding of rubber. Elastomers- Preparation, properties and applications of Buna S, Buna N, Conducting polymers – polyacetylene, polyaniline, – mechanism of conduction and applications. Bio degradable polymers : poly lactic acid. Nylon-2-Nylon-6						

Unit–IV Fuels and Combustion	8
Fuels - Types of fuels, solid fules-classification Calorific value of fuel - HCV	, LCV and
numerical problems based on calorific value, determination of calorific value	e by bomb
calorimeter. Analysis of coal, Liquid Fuels- refining of petroleum, fuels for	IC engines,
knocking and anti-knock agents, Octane and Cetane values, cracking of oils, synth	etic petrol -
Fischer-Tropsch's process; Gaseous fuels - composition and uses of natural gas, P	roducer gas
and water gas.	
Unit–V Advanced Engineering Materials	10
Composites: Definition, classification with examples and applications.	
Cement: Composition, Classification, preparation (Dry and Wet processes), S Hardening of Portland cement	etting and
Refractories: Classification, characteristics of good refractories, properties- Refr	actoriness.

refractoriness under load, porosity and chemical inertness – applications of refractories.

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants - mechanism of lubrication (thick film, thin film and extreme pressure) - properties of lubricants: viscosity, cloud point, pour point, flash point and fire point and Aniline point.

Course Outcomes:

On completion of this course, the students are able to:

- Recognize the basic properties of water and its significance in domestic and industrial purposes.(L2)
- Discuss the principles of electrochemistry in batteries.(L2)
- Discuss the knowledge of corrosion of metals and methods for its prevention towards the technological applications.(L2)
- Explain polymerization and the preparation, properties, and applications of thermoplastics & thermosetting, elastomers, & conducting polymers.(L1)
- Explain calorific values, octane number, refining of petroleum and cracking of oils and Select suitable fuels for IC engines. (L1)
- Describe the various engineering materials.(L1)

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. Skoog and West G.V.Subba Reddy, K.N.Jayaveera and C. Ramachandraiah, Engineering Chemistry, McGraw Hill, 2020.
- 2. Douglas A. Skoog, Stanley R. Crouch, F. James Holler, Principles of Instrumental Analysis, 6/e, Thomson Books, 2007.
- 3. H.F.W. Taylor, Cement Chemistry, 2/e, Thomas Telford Publications, 1997.
- 4. D.J. Shaw, Introduction to Colloids and Surface Chemistry, Butterworth-Heineman,1992.

E-resources:

- 1. https://libguides.humboldt.edu/openedu/chem
- 2. https://libraryguides.unh.edu/oer/chemistry
- 3. https://libraries.etsu.edu/research/guides/chemistry/oer

		C-Programr	ning & Data Struc	tures		
Course Code	L:T:P:S	Credits	Exam marks	Exam Dura	ation	Course Type
22A0502T	2: 1:0 :0	3	CIE:30 SEE:70	3 Hour	s	ESC
Course Object	ives:			L		
• Illustrate the basic concepts of C programming language.						
• Choose	a suitable C-	construct to c	levelop C code for	a given probl	lem.	
• Illustrate	e the fundam	ental concept	of data structures a	and Arrays		
• Emphas	ize the impor	rtance of data	structures in devel	oping and im	pleme	enting efficient
algorith	ms					
• Illustrate	e a variety of	data structur	es such as linked st	ructures, stac	eks, qu	ieues, trees,
and grap	ohs					
Syllabus					Tota	l Hours:45
Module - I		Introduct	ion to C Languag	ge	9 Hr	S
Structure of C p	orogram, C 🛛	Fokens, Data	types, Operators,	Precedence a	and A	Associativity of
operators, Expre	ssions and it	s evaluation,	control structures -	- sequence, s	electio	on and Iteration
statements, unco	nditional co	ntrol structur	res – break, goto,	continue. Ar	rays:	Introduction to
arrays, types of a	rrays, applic	ations of arra	ys, Programming e	xamples		
Module - II		Strings, Fu	nctions and Point	ers	9 Hr	S
String: Declarin	ng and Initia	lizing string	Printing and rea	ding strings.	strin	g manipulation
functions. String	input and ou	tput function	s. array of strings.	Programming	exan	ples
Functions: Defi	ning function	n, user defin	ned functions, star	dard function	ons, pa	assing array as
argument to fund	tion, recursi	on	,		1	8,
Pointers: declar	ing and init	ializing point	ers, pointers and a	arrays, pointe	er to j	pointer, pointer
arithmetic, dynai	nic memory	allocation,	-	• •	-	
Structures and U	nions					
Module - III		Da	ta Structures		9 Hr	S
Introduction to	Data Struc	tures: Defini	tions, Concept of	Data Structur	res, O	verview of
Data Structures,	Implementat	ion of Data S	tructures			
		1. т 1. 1		1 Lint Day	1.1. т	· 1- 1 T · 4
Linked Lists: D	efinition, Sil	ngle Linked	List, Circular Link	ed List, Dou	ible L	inked List,
Circular Double	Linked List,	Applications	of Linked List		0.11-	~
Module - IV		Sta	cks & Queues		9 Hr	8
Stacks: Introdu Applications of S	ction, Defi Stacks	nition, Repr	esentation of Sta	ck, Operati	ons c	on Stacks,
Quarter Introduction Definition Depresentation of Querras Operations on Querras						
Various Queue Structures Applications of Queues						
various Queue S	nucluies, A]	pheanons of	Queues			

Module - V	Trees ,Graphs ,Searching and Sorting 9 Hrs
Trees: Basic T	erminologies, Definition and Concepts, Binary Tree, Representation of
Binary Tree, ope	erations on Binary Tree, Binary Search Tree, Heap Tree
Graphs: Introd	uction, Graph Terminologies, Representation of graphs, Operations on
Graphs, Graph,	Graph Traversal Techniques: BFS and DFS
Searching and	Sorting – sequential search, binary search, exchange (bubble) sort,
selection sort. in	sertion sort.
Course Outcom	nes (CO)·
On completion	of this course student will be able to
	and explain the basic computer concents and programming principles of C
Indstrate language	(L2)
• Select th	e best selection and loop construct for solving given problem(L2)
Develop	C programs to demonstrate the applications of derived data types such as
arrays, p	ointers, strings.(L2)
• Impleme	nt basic operations on stack and queue using array representation(L2)
• Use link	ed structures, trees, and Graphs in writing programs(L2)
• Demonst	rate different methods for traversing Graphs and Trees (L2)
Textbooks:	
1. C Progra	mming & Data Structures – Behrouz A. Fourazan, Richard F. Gilberg.
2. Program	ming with C – Byron Gottfried, Third edition, Scham's Outlines
3. C Progra	mming: A Problem Solving Approach- Behrouz A. Fourazan, E.V.Prasad,
Richard	F. Gilberg
4. Classic I	Data Structures, Second Edition, Debasissamanta, PHI
5. Fundame	entals of Data Structures in C, 2nd Edition, E. Horowitz, S.Sahni and Susan
Anderson	n Freed, Universities Press
Reference Boo	ks:
1. Let us C	YashwantKanetkar, 6th Edition, BPB
2. C Progra	mming and Data Structures, P.Padmanabham, Third Edition, BS Publications
3. C Progra	mming, E.Balagurusamy, 3rd edition, TMHPublishers
4. Program	ming in C, Ashok N. Kamthane, AmitKamthane, Pearson
5. Data Stru Forouzar	Congogo Learning
6. "Data St	ructures and Algorithm Analysis in C" by Weiss
7. "Data St	ructure Through C" by Yashavant P Kanetkar
E-resources:	
1. <u>https://</u> w	ww.geeksforgeeks.org/c-programming-language/
2. <u>http://en</u> .	cppreference.com/w/c
3. <u>https://or</u>	nlinecourses.nptel.ac.in/noc19_cs42/
4. <u>https://w</u>	ww.linuxtopia.org/online_books/programming_books/gnu_c_programming_tut
5. https://co	odeforwin.org/
J. 1100.//00	

Basic Electrical and Electronics Engineering						
Course Code	L:T:P:S	Credits	Exam marks	Exam Duration	Course Type	
22A0203T	3: 0:0:0	3	CIE:30 SEE:70	3 Hours	ESC	
~						

Course Objectives:

To introduce the concept of electrical circuits and its components. To introduce the characteristics of various electronic devices. To impart the knowledge of various configurations, characteristics and applications of electrical & electronic components.

- 1) To understand the basic principles of all semiconductor devices.
- 2) To be able to solve problems related to diode circuits, and amplifier circuits.
- 3) To analyze diode circuits, various biasing and small signal equivalent circuits of amplifiers.
- 4) To be able to compare the performance of BJTs and MOSFETs.
- 5) To design rectifier circuits and various amplifier circuits using BJTs and MOSFETs.

Syllabus		Total Hours:48				
Unit - I	Fundamentals	9 Hrs				
DC&AC Circuits	: Electrical circuit elements (R - L and C) - Kirchhoff la	aws - Series and				
parallel connection	n of resistances with DC excitation. Superposition Theorem	rem - Representation				
of sinusoidal wave	eforms - peak and rms values - phasor representation - re	al power - reactive				
power - apparent j	power - power factor - Analysis of single-phase ac circui	ts consisting of RL -				
RC - RLC series c	ircuits, Resonance.					
Unit - II	DC & AC Machines	9 Hrs				
DC & AC Machi	ines : A: DC Machines : Principle and operation of	DC Generator - EMF				
equations - OCC	characteristics of DC generator - principle and operation	ation of DC Motor -				
Performance Char	racteristics of DC Motor - Speed control of DC shut Mot	or.				
B: AC Machines	s: Principle and operation of Single Phase Transformer-	-EMF equation - OC				
and SC tests on	transformer - Principle and operation of 3-phase i	induction motor and				
alternator., [Elem	entary treatment only]					
Unit - III	Basics of Power Systems	10 Hrs				
Basics of Power S	Systems: Layout & operation of Hydro, Thermal, Nuclea	ar Stations - Solar &				
wind generating st	tations – Typical					
AC Power Supply	scheme – Elements of Transmission line – Types of Dis	stribution systems:				
Primary & Second	lary distribution systems.					
Unit - IV	P-N Junction Diode	10 Hrs				
Basic Electronic	Devices : P-N Junction Diode: Diode equation, Ener	gy Band diagram,				
Volt-Ampere char	acteristics, Temperature dependence, Ideal versus practi	cal, Static and				
dynamic resistances, Equivalent circuit, Diffusion and Transition Capacitances. Zener diode						
operation, Zener diode as voltage regulator.						
Rectifiers : P-N junction as a rectifier - Half Wave Rectifier, Ripple Factor - Full Wave						
Rectifier, Bridge Rectifier.						
Bipolar Junctio	n Transistor (BJT): Construction, Principle of	Operation, Symbol				
Amplifying Actio	n, Common Emitter, Common Base and Common Co	llector configurations				
and Input-Output	Characteristics, Comparison of CE, CB and CC configur	rations				

Junction Field Effect Transistor and MOSFET: Construction, Principle of Operation,							
Symbol, Pinch-Of	f Voltage,	Volt-A	mpere C	haracteri	stic,	Comparison o	f BJT and FET.
TT •4 T7	т	/• ID			• 4	0 D' '/ I	10 TT

Unit - V	Junction Field Effect Transistor& Digital			
	Electronics			

Digital Electronics & Micro processors :

Digital Electronics: Logic Gates, Simple combinational circuits–Half and Full Adders, BCD Adder.Latches and Flip-Flops (S-R, JK and D), Shift Registers and Counters **8085 Micro processor:** 8085 Micro processors architecture

Course Outcomes (CO):

On completion of this course, student will be able to

- Apply KCL, KVL and network theorems to analyse DC circuit.
- Analyze the single-phase AC Circuits, the representation of alternating quantities and determining the power and power factor in these circuits..
- Comprehend the construction and Operation of DC and AC machines.
- Understand the operation of PN Junction diode and its application in rectifier circuits.
- Compare the different configurations of BJT and draw the V-I characteristics of BJT, JFET and MOSFET..

Textbooks:

- M.Surya Kalavathi, Ramana Pilla, Ch. Srinivasa Rao, Gulinindala Suresh, " Basic Electrical and Electronics Engineering", S.Chand and Company Limited, New Delhi, 1st Edition, 2017.
- **2.** R.L.Boylestad and Louis Nashlesky, "**Electronic Devices & Circuit Theory**", Pearson Education, 2007.

Reference Books:

- V.K. Mehtha and Rohit Mehta, "Principles of Electrical Engineering and Electronics", S.Chand & Co., 2009.
- 2. Jacob Milliman, Christos C .Halkias, Satyabrata Jit (2011), "Electronic Devices and Circuits",

Engineering Workshop Lab (Common to All Branches of Engineering)						
Course Code	L:T:P:S	Credits	Exam marks	Exam Durat	tion Course Type	
22A0303	0 :0:3:0	1.5	CIE:30 SEE:70	3 Hours	ESC	
Course Object	ives:					
To familiarize s	students with	wood wo	rking, sheet metal	operations, fit	ting and electrical	
house wiring skills.						
Syllabus					Total Hours:45	
Wood Working:						
Familiarity with	n different t	ypes of wo	oods and tools use	ed in wood w	vorking and make	
following joints						
a) Half – Lap joi	nt					
b) Mortise and T	enon joint					
c) Corner Dovet	ail joint or B1	ridle joint				
Sheet Metal Wo	orking:					
Familiarity with	n different ty	pes of too	ls used in sheet n	netal working,	Developments of	
following sheet	metal job froi	n GI sheets				
a) Tapered tray						

- b) Conical funnel
- c) Elbow pipe
- d) Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises a)V-fit

- b) Dovetail fit
- c) Semi-circular fit
- d) Bicycle tire puncture and change of two wheeler tyre

Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

- a) Parallel and series
- b) Two-way switch
- c) Godown lighting
- d) Tube light
- e) Three phase motor
- f) Soldering of wires

Course Outcomes (CO):

On completion of this course, student will be able to

- Apply wood working skills in real world applications. (13)
- Build different objects with metal sheets in real world applications. (13)
- Apply fitting operations in various applications. (13)
- Apply different types of basic electric circuit connections. (13)
- Use soldering and brazing techniques. (I2)

Note: In each section a minimum of three exercises are to be carried out.

It Workshop Lab							
Course Cod	e L:T:P:S	Credits	Exam marks	Exam Duration	Course Type		
22A0502P	0: 0: 3:0	1.5	CIE:30 SEE:70	3 Hours	ESC		
Course Obj	ectives:			·			
1. To ma	the student	ts know abo	out the internal par	rts of a computer,	assembling and		
dissen	bling a compu	iter from the	e parts, preparing a	computer for use 1	by installing the		
operat	operating system						
2. To pr	ovide Technic	cal training	to the students	on Productivity to	ools like Word		
proces	sors Spreadshe	ets, Presenta	ations and LAteX				
3. To lea	rn about Netw	vorking of c	computers and use	Internet facility for	r Browsing and		
Search	ing						
Syllabus				Tota	al Hours:45		
Task 1: Lear	n about Compu	uter: Identify	y the internal parts	of a computer, and	l its peripherals.		
Represent the	same in the f	form of diag	grams including Bl	ock diagram of a c	computer. Write		
specifications	for each part	of a comput	ter including periph	nerals and specifica	tion of Desktop		
computer. Sul	omit it in the fo	rm of a repo	ort.				
Task 2: Asser	nbling a Comp	outer: Disass	emble and assemble	e the PC back to wo	rking condition.		
Students should be able to trouble shoot the computer and identify working and non-working							
parts. Student	parts. Student should identify the problem correctly by various methods						
Task 3: Insta	ll Operating sy	stem: Stude	ent should install Li	inux on the comput	er. Student may		
install another operating system (including proprietary software) and make the system dual					the system dual		
boot or multi boot. Students should record the entire installation process.							
Task 4: Operating system features: Students should record the various features that are							
supported by the operating system(s) installed. They have to submit a report on it. Students							
should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc.							
Students should install new application software and record the installation process.							
Networking and Internet							
Task 5: Networking: Students should connect two computers directly using a cable or wireless							
connectivity and share information. Students should connect two or more computers using							
switch/hub and share information. Crimpling activity, logical configuration etc. should be done							
by the student. The entire process has to be documented.							
Task 6: Browsing Internet: Student should access the Internet for Browsing. Students should							
search the Internet for required information. Students should be able to create e-mail account							

and send email. They should get acquaintance with applications like Facebook, skype etc. If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating email account.

Task 7: Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc. Productivity tools

Task 8: Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered, Image Manipulation tools.

Task 9: Presentations: creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colours, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show.

Task 10: Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet

Task 11: LateX: Introduction to Latex and its installation and different IDEs. Creating first document using Latex, using content into sections using article and book class of LaTeX. Styling Pages: reviewing and customizing different paper sizes and formats. Formatting text (styles, size, alignment, colors and adding bullets and numbered items, inserting mathematical symbols, and images, etc.). Creating basic tables, adding simple and dashed borders, merging rows and columns. Referencing and Indexing: cross-referencing (refer to sections, table, images), bibliography (references).

Course Outcomes (CO):

On completion of this course, student will be able to

- 1. Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- 2. Prepare the Documents using Word processors and Prepare spread sheets for calculations using excel and also the documents using LAteX.
- 3. Prepare Slide presentations using the presentation tool.
- 4. Interconnect two or more computers for information sharing.
- 5. Access the Internet and Browse it to obtain the required information.

Reference Books:

- 1. Introduction to Computers, Peter Norton, McGraw Hill
- 2. MOS study guide for word, Excel, Powerpoint& Outlook Exams, Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs, Bigelows, TMH
- **6.** Lamport L. LATEX: a document preparation system: user's guide and reference manual. Addison-wesley; 1994.

Note: Use open source tools for implementation of the above exercises.

		Engir	eering Chemistry I	Lab			
Course Code	L:T:P:S	Credits	Exam marks	Exam Durat	tion	Course Type	
22A0012P	0 :0:3:0	1.5	CIE:30 SEE:70	3 Hours		BSC	
Course Objec	ctives:						
This course wil	ll enable stud	lents to:					
• To Ve	rify the fund	amental con	cepts with experiment	nts			
Syllabus	SyllabusTotal Hours:45						
Note: In the fe	ollowing list	, out of 14 e	xperiments conduct a	any 10 experim	nents f	from the below	
list							
List of Exper	iments						
1. D	etermination	of Hardnes	s of a groundwater s	ample and min	ieral w	vater sample.	
2. D	etermination	of Copper	by EDTA method.				
3. C	3. Conductometric estimation of strong acid using standard sodium hydroxide solution.						
4. E	stimation of	`iron (II) us nod).	sing diphenylamine	indicator (Dic	hrome	etry – Internal	
5. D	etermination	n of Corrosic	on rate and inhibition	efficiency of a	an inh	ibitor for mild	
6 1	H metric tit	ration of (i)	strong acid vs stro	ng base (ii) w	veak a	cid vs strong	
0. p.	ase		strong actu vs. stro	ing base, (ii) w	Car a	ield vs. strollg	
7. E	stimation of	Dissolved () xvgen by Winkler's	method.			
8. P	 Potentiometry - determination of redox potentials and emfs 						
9. D	etermination	of Strength	of an acid in Pb-Ac	id battery.			
10. C	olorometric	estimation of	of manganese.	2			
11. P	reparation of	a polymer.	-				
12. D	etermination	n of Viscosit	y of lubricating oil b	y Redwood Vi	scome	eter- 1	
13. Determination of Viscosity of lubricating oil by Redwood Viscometer -2							
14. D	Determination alkalinity of water sample.						
Course Outco	mes (CO):						
On completion	of this cour	se, student	will be able to				
• Measure the strength of an acid present in secondary battery and Determine the							
rate of corrosion for mild steel in hydrochloric acid medium.(L2)							
• Determine the Hardness of a groundwater sample and estimate the Copper by							
EDTA method. (L1) • Determine the cell constant and conductorize of colutions using conductivity							
• Det	• Determine the cell constant and conductance of solutions using conductivity meter and different acid-base titrations by pH meter (1.1)						
• Syn	 Synthesize of advanced polymer materials. (L2) 						
 Determine the potentials and EMFs of solutions by Potentiometry and Estimate 							
the iron (II) using diphenylamine indicator. (L1)							
• Determine the viscosity of different lubricants using Redwood Viscometer. (L1)							

Textbooks:

1. Vogel's Text book of Quantitative Chemical Analysis, Sixth Edition – Mendham J et al, Pearson Education, 2012.

Reference Books:

- 1. Chemistry Practical– Lab Manual, First edition, Chandra Sekhar KB, Subba Reddy GV and Jayaveera KN, SM Enterprises, Hyderabad, 2014.
- Engineering Chemistry Laboratory Manual, For B.Tech. I year (ME, CE)Students, Dr. A. Ravikrishna, Dr. B. Tirumalarao Sri Krishna Hitech Publishing company, Chennai, 2019.

E-resources:

- 1. https://guides.lib.purdue.edu/chemlabs.
- 2. https://chemcollective.org/.
- 3. http://chemistry.alanearhart.org/Lab/index.html.
- 4. <u>https://www.acs.org/content/acs/en/education/students/highschool/chemistryclubs/activi</u> <u>ties</u>/simulations.html.
- 5. https://instr.iastate.libguides.com/oer/chemistry.

C-Programming & Data Structures Lab							
Course Code	L:T:P:S	Credits	Exam marks	Exam Duration	Course Type		
22A0519P	0:0:3:0	3	CIE:30 SEE:70	3 Hours	ESC		
Course Object	tives:	1	1				
This course will	enable stud	lents to:					
• To get :	familiar witl	h the basic o	concepts of C program	nming.			
• To desi	gn program	s using arra	ys, strings, pointers a	nd structures.			
• To illus	 To illustrate the use of Stacks and Oueues 						
• To app	ly different o	operations o	n linked lists.				
• To dem	onstrate Bir	hary search	tree traversal techniq	ues.			
• To desi	gn searchin	g and sortin	g techniques.				
Syllabus	<u> </u>	0		Tota	al Hours:45		
Note: In the fo	llowing list,	out of 12 e	xperiments conduct a	any 10 experiments	from the below		
list	0 /		1	5 1			
List of Experi	ments						
Week I							
Write C program	ns that use b	oth recursiv	ve and non-recursive	functions			
i) To find the f	factorial of a	ı given integ	ger.				
ii) To find the (GCD (greate	est common	divisor) of two giver	n integers.			
iii) To solve To	wers of Han	oi problem.	, C	C			
Week 2		1					
a) Write a C pr	ogram to fir	nd both the	largest and smallest n	number in a list of ir	ntegers.		
b) Write a C pr	ogram that	uses functio	ns to perform the foll	lowing:	-		
i) Addition of T	wo Matrices	s ii) Multipl	ication of Two Matri	ces			
Week 3		/ 1					
a) Write a C program that uses functions to perform the following operations:							
i) To insert a sub-string in to a given main string from a given position.							
ii) To delete n characters from a given position in a given string.							
Week 4							
a) Write a C program that displays the position or index in the string S where the string T							
begins, or - 1 if S doesn't contain T.							
b) Write a C pr	ogram to co	ount the line	s, words and characte	ers in a given text.			
Week 5	-			-			
a) Write a C Pr	ogram to pe	erform vario	us arithmetic operation	ons on pointer varia	bles.		
b) Write a C Program to demonstrate the following parameter passing mechanisms:							
i) call-by-value ii) call-by-reference							
Week 6							
Write a C program that uses functions to perform the following operations:							
i) Reading a complex number							
ii) Writing a complex number							
iii) Addition of	two comple	x numbers					

iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

Week 7

Write C programs that implement stack (its operations) using

- i) Arrays
- ii) Pointers

Week 8

Write C programs that implement Queue (its operations) using

i) Arrays

ii) Pointers

Week 9

Write a C program that uses Stack operations to perform the following:

i) Converting infix expression into postfix expression

ii) Evaluating the postfix expression

Week 10

Write a C program that uses functions to perform the following operations on singly linked list.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 11

Write a C program that uses functions to perform the following operations on Doubly linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 12

Write a C program that uses functions to perform the following operations on circular linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 13

Write a C program that uses functions to perform the following:

i) Creating a Binary Tree of integers

ii) Traversing the above binary tree in preorder, inorder and postorder.

Week 14

Write C programs that use both recursive and non-recursive functions to perform the following

searching operations for a key value in a given list of integers:

i) Linear search

ii) Binary search

Week 15

Write a C program that implements the following sorting methods to sort a given list of integers in

ascending order

- i) Bubble sort
- ii) Selection sort
- iii) Insertion sort

Course Outcomes (CO):

On completion of this course, student will be able to

- Demonstrate basic concepts of C programming language. (L2)
- Develop C programs using functions, arrays, structures and pointers. (L6)
- Illustrate the concepts Stacks and Queues. (L2)
- Design operations on Linked lists. (L6)
- Apply various Binary tree traversal techniques. (L3)
- Develop searching and sorting methods. (L6)

Textbooks:

- 1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education.
- 2. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 3. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. PradipDey and ManasGhosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E.Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K.Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T.Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Basic Electrical & Electronics Engineering Lab					
Course Code	L:T:P:S	Credits	Exam marks	Exam Durati	on Course Type
22A0204P	0 :0:3:0	1.5	CIE:30 SEE:70	3 Hours	ESC
Course Objec	tives:				·
• To get	practical knowle	edge about	basic electrical circ	uits, electronic	devices like
Diodes	, BJT, JFET and	also analy	ze the performance	of DC Motors,	AC Motors and
Transfo	ormers.				
Syllabus				Т	otal Hours:45
List of Experin	nents			·	
LIST OF EXPE	RIMENTS: (Co	nduct all e	xperiments).		
Note: All the	experiments sh	nall be in	plemented using	both Hardwar	e and Software/
Equipment Req	uired:				
1.Verification o	f Kirchhoff's La	iws.			
2. Verification of	of Superposition	Theorem.			
3. Determination	n of Phase Angl	e for RL&	RC series circuit.		
4. Brake Test or	n DC-Shunt Mot	or. Determ	ination of Performation	ance curves.	
5. OC & SC Tes	sts on Single Pha	ase Transfo	ormer.		
6. Brake Test or	n Three Phase In	duction M	otors. Determinatio	n of Performan	ce curves
7. V-I Character	ristics of Solar C	Cell.			
8. V-I Character	ristics of PN jun	ction Diod	e and Zener Diode		
9. Half Wave R	ectifier and Full	Wave rect	ifier.		

10. Input and Output characteristics of BJT with CE configuration

11. Input and Output characteristics of BJT with CB configuration

12. Input and Output Characteristics of JFET.

Course Outcomes (CO):

On completion of this course, student will be able to

- Experimentally verify the basic circuit theorems, KCL and KVL
- Measure power, power factor and phase angle in RL&RC circuits experimentally.
- Acquire hands on experience of conducting various tests on dc shunt motor, single phase transformers and three phase induction motors and obtaining their performance indices using standard analytical as well as graphical methods
- Draw the characteristics of different semiconductor devices like PN junction Diode, Zener Diode, BJT and JFET by conducting suitable experiments.
- Experimentally verify the working of half and full wave rectifier by using PN Junction diodes