

Г

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING B. Tech ECE – RG 22 Regulation

Category	Course	Course Title	Hour	s per v	Credits			
	Code			Т	Р	С		
PCC	22A0434T	Microprocessor and Microcontroller	3	0	0	3		
PCC	22A0435T	Digital Signal Processing	3	0	0	3		
PCC	22A0436T	VLSI Design	3	0	0	3		
PEC		Professional Elective-II:	3	0	0	3		
OEC		Open Elective-II:	3	0	0	3		
PCC (Lab)	22A0441P	Microprocessor and Microcontroller Lab 0		0	3	1.5		
PCC (Lab)	22A0442P	Digital Signal Processing Lab	0	0	3	1.5		
PCC (Lab)	22A0443P	VLSI Design Lab	0	0	3	1.5		
SC	22A0539	Skill Oriented Course: JAVA Programming	1	0	2	2		
MC	22A0032M	Mandatory Course: Research Methodology	2	0	0	0		
				To	otal cre	edits 21.5		

S. No.	Course Code	Name of the Professional Elective-II
1	22A0437T	Electronic Measurements and Instrumentation
2	22A0438T	Sensors & Actuators
3	22A0439T	Radar and Satellite Communications
4	22A0440T	Embedded System Design

S. No.	Course Code	Name of the Open Elective-II
1	22A0528T	Machine Learning
2	22A0257T	Modern Control theory
3	22A0150T	Environmental Economics
4	22A0027T	Organizational Behaviour

Category	Credits
Professional Core Courses (PCC)	13.5
Professional Elective Courses (PEC)	3
Open Elective Courses (OEC)	3
Skill Oriented Course (SC)	2
Industrial/Research Internship (Mandatory) 2 Months	-
Total	21.5

	0
MICROPROCESSOR	AND MICROCONTROLLER

Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type
22A0434T	3:0:0	3	CIE:30 SEE:70	3 Hours	PCC
Course Object	ives:		1		
• To introdu	ice fundament	al architectu	ral concepts of mic	roprocessors and mic	rocontrollers.
• To impart	knowledge or	n addressing	modes and instruct	ion set of 8086 and 8	051
• To introdu	ice assembly l	anguage pro	gramming concepts	5	
• To explair	n memory and	I/O interfac	ing with 8086 and 8	8051	
To introdu	ice16 bit and 3	32 bit microc	controllers.		
		Sylla	bus		Total Hours: 48
		Unit			10 Hrs
8086 Architec	ture: Main f	eatures, pin	diagram/description	n, 8086 microproces	sor family, internal
architecture, bu	is interfacing	unit, execu	tion unit, interrupt	s and interrupt resp	onse, 8086 system
timing, minimu	m mode and r	naximum me	ode configuration.		
		Unit	-II		10 Hrs
8086 Program	nming: Prog	ram develop	pment steps, instr	uctions, addressing	modes, assembler
directives, writ	ing simple pr	ograms with	n an assembler, ass	sembly language pro	ogram developmen
tools.					Γ
	~	Unit -			10 Hrs
	0		U I	AM, ROM), Intel 8	1 0
		-		acing seven segment	1 1
				rchitecture and inter	•
controllers.	r, stepper mo	tor, A/D an	d D/A converters,	Need for 8259 prog	rammable interrup
controllers.		Unit -	-IV		9 Hrs
Microcontrolle	r - Architec			odes - I/O Pins Po	
			U	rams-Assembly lang	
8051 Programm	ning in C.	-	-		
		Unit	$-\mathbf{V}$		9 Hrs
Interfacing M	licrocontrolle	er–Timers/	Counters , Progr	amming 8051 Tim	ers - Serial Por
Programming -	Interrupts Pr	ogramming	- LCD & Keyboa	rd Interfacing - AD	C, DAC & Sensor
Interfacing - Ex	ternal Memor	ry Interface-	Stepper Motor and	l Waveform generation	on - Comparison of
Microprocessor	, Microcontro	ller, Introduc	ction to RISC proce	essors	
Textbooks:					
1. K M Bhurc Hill Educat		ay, Advance	d Microprocessors	and Peripherals, 3rd o	edition, McGraw
	,	large Arabita	otura Programmin	g. Interfacing and Sy	stom Davian Ind

2. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd edition, Pearson, 2012.

References:

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING B. Tech ECE – RG 22 Regulation

1. Kenneth J. Ayala, the 8051 Microcontroller, 3rd edition, Cengage Learning, 2004.

Course Outcomes:

After the completion of the course students will able to:

CO1: Distinguish between microprocessors & microcontrollers

CO2: Develop assembly language programming

CO3: Describe interfacing of 8086 with peripheral devices

CO4: Understand the concept of Microcontrollers

CO5: Design applications using microcontrollers

CO6: Design external Memory Interface using microcontroller.

B. Tech ECE – RG 22 Regulation **DIGITAL SIGNAL PROCESSING**

Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type
22A0435T	3:0:0	3	CIE:30	3 Hours	PCC
			SEE:70		

Course Objectives:

- To describe discrete time signals and systems.
- To teach importance of FFT algorithm for computation of Discrete Fourier Transform. ٠
- To expose various implementations of digital filter structures. ٠
- To present FIR and IIR Filter design procedures. ٠

• To outli	ne need of Multi-rate Processing.					
	Syllabus	Total Hours: 48				
Unit –I	Introduction to discrete time signals and systems	10 Hrs				
Introduction to	digital signal processing, review of discrete-time signals and s	ystems, analysis of				
discrete-time lin	ear time invariant systems, frequency domain representation of d	liscrete time signals				
and systems, and	lysis of linear time-invariant systems in the z-domain, pole-zero s	stability.				
Unit-II	Discrete Fourier Transform & Fast Fourier Transform	10 Hrs				
Discrete Fourie	r Transform - Introduction, Discrete Fourier Series, propertie	s of DFS, Discrete				
Fourier Transfor	m, Inverse DFT, properties of DFT, Linear and Circular convo	olution, convolution				
using DFT.						
	ransform - Introduction, Fast Fourier Transform, Radix-2 Deci	mation in time and				
Decimation in fr	equency FFT, Inverse FFT (Radix-2).					
Unit-III	IIR Filters	10 Hrs				
IIR Filters-Int	oduction to digital filters, Analog filter approximations -	- Butterworth and				
Chebyshev, Des	ign of IIR Digital filters from analog filters by Impulse inv	ariant and bilinear				
transformation methods, Frequency transformations, Basic structures of IIR Filters - Direct form-I,						
transformation h						
Direct form-II, C	Cascade form and Parallel form realizations	1				
Direct form-II, C Unit-IV	Cascade form and Parallel form realizations FIR Filters	9 Hrs				
Direct form-II, C Unit-IV FIR Filters-Intr	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free	quency response of				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w	quency response of vindowing methods				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr	Cascade form and Parallel form realizations FIR Filters oduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa	quency response of vindowing methods arison of IIR & FIR				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w	quency response of vindowing methods arison of IIR & FIR				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr	Cascade form and Parallel form realizations FIR Filters oduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa	quency response of vindowing methods arison of IIR & FIR				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa actures of FIR Filters – Direct form, Cascade form, Linear phase re-	quency response of vindowing methods arison of IIR & FIR ealizations 9 Hrs				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa ictures of FIR Filters – Direct form, Cascade form, Linear phase re- Multi rate Digital Signal Processing	quency response of vindowing methods arison of IIR & FIR ealizations 9 Hrs te conversion by a				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa actures of FIR Filters – Direct form, Cascade form, Linear phase ro Multi rate Digital Signal Processing ital Signal Processing: Decimation, Interpolation, Sampling ra	quency response of vindowing methods arison of IIR & FIR ealizations 9 Hrs te conversion by a				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig rational factor; F Textbooks:	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa actures of FIR Filters – Direct form, Cascade form, Linear phase ro Multi rate Digital Signal Processing ital Signal Processing: Decimation, Interpolation, Sampling ra	quency response of vindowing methods arison of IIR & FIR ealizations9 Hrste conversion by a Applications.				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig rational factor; F Textbooks: 1. Digital Sign	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa actures of FIR Filters – Direct form, Cascade form, Linear phase ro Multi rate Digital Signal Processing ital Signal Processing: Decimation, Interpolation, Sampling ra requency domain characterization of Interpolator and Decimator;	quency response of vindowing methods arison of IIR & FIR ealizations9 Hrste conversion by a Applications.				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig rational factor; F Textbooks: 1. Digital Sign Manolakis, 1	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa- ictures of FIR Filters – Direct form, Cascade form, Linear phase ro- Multi rate Digital Signal Processing ital Signal Processing: Decimation, Interpolation, Sampling ra requency domain characterization of Interpolator and Decimator; al Processing, Principles, Algorithms, and Applications, John G. I	quency response of vindowing methods arison of IIR & FIR ealizations9 Hrste conversion by a Applications.				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig rational factor; F Textbooks: 1. Digital Sign Manolakis, 1	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa- actures of FIR Filters – Direct form, Cascade form, Linear phase ro- Multi rate Digital Signal Processing ital Signal Processing: Decimation, Interpolation, Sampling ra requency domain characterization of Interpolator and Decimator; al Processing, Principles, Algorithms, and Applications, John G. I Pearson Education, 2007. me Signal Processing, A.V.Oppenheim and R.W. Schaffer, PHI.	quency response of vindowing methods arison of IIR & FIR ealizations 9 Hrs te conversion by a Applications.				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig rational factor; F Textbooks: 1. Digital Sign Manolakis, I 2. Discrete Tir	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and wi iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa- ictures of FIR Filters – Direct form, Cascade form, Linear phase re- Multi rate Digital Signal Processing ital Signal Processing: Decimation, Interpolation, Sampling ra requency domain characterization of Interpolator and Decimator; al Processing, Principles, Algorithms, and Applications, John G. I Pearson Education, 2007. ne Signal Processing, A.V.Oppenheim and R.W. Schaffer, PHI. s:	quency response of vindowing methods arison of IIR & FIR ealizations 9 Hrs tte conversion by a Applications. Proakis, Dimitris G.				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig rational factor; F Textbooks: 1. Digital Sign Manolakis, I 2. Discrete Tir	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa- actures of FIR Filters – Direct form, Cascade form, Linear phase ro- Multi rate Digital Signal Processing ital Signal Processing: Decimation, Interpolation, Sampling ra requency domain characterization of Interpolator and Decimator; al Processing, Principles, Algorithms, and Applications, John G. I Pearson Education, 2007. ne Signal Processing, A.V.Oppenheim and R.W. Schaffer, PHI. s: al Processing – A practical approach, S.K.Mitra, 2nd Edition, Pea	quency response of vindowing methods arison of IIR & FIR ealizations 9 Hrs tte conversion by a Applications. Proakis, Dimitris G.				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig rational factor; F Textbooks: 1. Digital Sign Manolakis, 1 2. Discrete Tin Reference Book 1. Digital Sign New Delhi, 2004	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa- actures of FIR Filters – Direct form, Cascade form, Linear phase ro- Multi rate Digital Signal Processing ital Signal Processing: Decimation, Interpolation, Sampling ra requency domain characterization of Interpolator and Decimator; al Processing, Principles, Algorithms, and Applications, John G. I Pearson Education, 2007. ne Signal Processing, A.V.Oppenheim and R.W. Schaffer, PHI. s: al Processing – A practical approach, S.K.Mitra, 2nd Edition, Pea	quency response of vindowing methods arison of IIR & FIR ealizations 9 Hrs te conversion by a Applications. Proakis, Dimitris G.				
Direct form-II, C Unit-IV FIR Filters-Intr linear phase FI (Rectangular, Tr filters, Basic stru Unit-V Multi rate Dig rational factor; F Textbooks: 1. Digital Sign Manolakis, 1 2. Discrete Tir Reference Book 1. Digital Sign New Delhi, 2004 2. Digital Sign	Cascade form and Parallel form realizations FIR Filters roduction, Characteristics of FIR filters with linear phase, Free R filters, Design of FIR filters using Fourier series and w iangular, Raised Cosine, Hanging, Hamming, Blackman), Compa- ictures of FIR Filters – Direct form, Cascade form, Linear phase re- Multi rate Digital Signal Processing ital Signal Processing: Decimation, Interpolation, Sampling ra requency domain characterization of Interpolator and Decimator; al Processing, Principles, Algorithms, and Applications, John G. I Pearson Education, 2007. ne Signal Processing, A.V.Oppenheim and R.W. Schaffer, PHI. s: al Processing – A practical approach, S.K.Mitra, 2nd Edition, Pearse.	quency response of vindowing methods arison of IIR & FIR ealizations 9 Hrs tte conversion by a Applications. Proakis, Dimitris G. arson Education, raw Hill, 2007.				

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING B. Tech ECE – RG 22 Regulation

Course Outcomes (CO):

After the completion of the course students will able to:

CO1: Understand the basic concepts of discrete time signals and systems.

CO2: Formulate difference equations for the given discrete time systems

CO3: Apply FFT algorithms for determining the DFT of a given signal

CO4: Compare FIR and IIR filter structures

CO5: Design digital filter (FIR & IIR) from the given specifications

CO6: Understand the concept of multi rate DSP and applications of DSP

VLSI DESIGN						
Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type	
22A0436T	3:0:0	3	CIE:30	3 Hours	PCC	
			SEE:70			

Course Objectives:

- To give exposure to different steps involved in fabrication Process of PMOS & NMOS transistors, CMOS & BICOM Inverters.
- To provide knowledge on electrical properties of MOS & BICMOS devices to analyze the behaviour of inverters designed with various loads.
- To apply the design Rules and draw layout of a given logic circuit and basic circuit concepts to MOS circuits.
- To provide concepts to design building blocks of data path of any system using gates.
- To Apply the design for testability methods for combinational & sequential CMOS circuits

Syllabus	Total hours: 48
Unit –I::Introduction to Fabrication Process	10 Hrs

Introduction: Brief Introduction to IC technology, Moore's Law, Different modes MOSFET operation, Fabrication Process of PMOS, NMOS, CMOS & Bi-CMOS devices, Comparison between CMOS and Bi-polar Technologies.

Fabrication Steps: Wafer Preparation, Oxidation, Photolithography, Etching, Ion Implantations, Metallization, Testing.

Unit –II::Basic Electrical Properties of MOS/BiCMOS & Circuits Concepts 10 Hrs

Basic Electrical Properties: Ids Vs Vds relationships, MOS transistor Threshold Voltage-VT, figure of merit- ω 0, Transconductance - gm, Output conductance-gds, Pass transistor logic, NMOS Inverter, Pull-up to Pull-down Ratio for NMOS inverter driven by another NMOS inverter, and through one or more pass transistors Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

Basic Circuit Concepts: Sheet Resistance Rs and its concepts to MOS, Area Capacitances calculations, Inverter Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-in and fanout

Unit –III:: VLSI Circuit Design Processes	10 Hrs			
VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, I	Lambda(λ)-based			
design rules for wires, contacts and Transistors, Layout Diagrams for NMOS and	CMOS Inverters			
Logic Gates and Various MOS Circuits. Scaling of MOS circuits, Limitations of Sca	ling.			
Unit –IV:: Basic building blocks of Analog IC design & Static/Dynamic CMOS	9 Hrs			
Design				
Analog IC design: Modelling of transistor, body bias effect, biasing styles, single	e stage amplifier			
with resistive load, single stage amplifier with diode connected load, Common S	ource amplifier,			
Common Drain amplifier, Common Gate amplifier, current sources and sinks.				
Static CMOS Design: Complementary CMOS, Rationed Logic, Pass-Transistor Log	gic			
Dynamic CMOS Design: Dynamic Logic-Basic Principles, Speed and Power	Dissipation of			
Dynamic Logic, Issues in Dynamic Design, Cascading Dynamic Gates, Choosing a L	.ogic Style.			
Unit –V::CMOS Testing 10 Hrs				
CAD Tools for Design and Simulation, Aspects of Design Tools, Test and Testability-System				
Partitioning, Layout and Testability, Reset/Initialization, Design for Test	ability ,Testing			
Combinational Logic, Testing Sequential Logic, Practical Design for Test (OFT)	Guidelines, Scan			

(W)

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING B. Tech ECE – RG 22 Regulation

Design Techniques, Built-In-Self-Test (BIST), Future Trends.

Text Books:

- 1. Kamran Eshraghian, "Essentials of VLSI Circuits and Systems", Douglas and A. Pucknell and SholehEshraghian, Prentice-Hall of India Private Limited, 2005 Edition.
- 2. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2003
- 3. Modern VLSI Design Wayne Wolf, 3 Ed., 1997, Pearson Education.

References:

- 1. Jan M. Rabaey, "Digital Integrated Circuits", AnanthaChandrakasan and Borivoje Nikolic, Prentice-Hall of India Pvt.Ltd, 2nd edition, 2009.
- 2. John P. Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons, reprint 2009
- 3. CMOS VLSI Design-A Circuits and Systems Perspective, Neil H.E Weste, David Harris, Ayan Banerjee, 3rd Edn, Pearson, 2009.

Course Outcomes:

After the completion of the course students will able to:

- **CO1:** Acquire qualitative knowledge about the fabrication process of integrated circuit using MOS transistors.
- CO2: Understand the concept of Basic Electrical Properties of MOS/Bi-CMOS Devices
- **CO3:** Apply the basic circuit concepts to MOS circuits.
- CO4: Apply the design Rules to draw the Stick diagram &layout of a given logic circuit.
- **CO5:** Design MOSFET based Analog IC Design and MOSFET based logic circuits using various logic styles like static and dynamic CMOS

CO6: Understand the concept of testing and adding extra hardware to improve testability of system.

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type
22A0437T	3:0:0	3	CIE:30	3 Hours	PEC
			SEE:70		

Course Objectives:

- It provides an understanding of various measuring system functioning and metrics for performance analysis.
- Provides understanding of principle of operation, working of different electronic instruments viz. signal generators, signal analyzers, recorders and measuring equipment.
- Understanding the concepts of various measuring bridges and their balancing conditions.
- Provides understanding of use of various measuring techniques for measurement of different physical parameters using different classes of transducers.

r J r r 8				
Syllabus	Total Hours: 48			
Unit –I	10 Hrs			
Block Schematics of Measuring Systems: Performance Characteristics, Stati	c Characteristics,			
Accuracy, Precision, Resolution, Types of Errors, Gaussian Error, Root Sum	Squares formula,			
Dynamic Characteristics, Repeatability, Reproducibility, Fidelity, Lag; Measuring	Instruments: DC			
Voltmeters, D' Arsonval Movement, DC Current Meters, AC Voltmeters and	Current Meters,			
Ohmmeters, Multimeters, Meter Protection, Extension of Range, True R	MS Responding			
Voltmeters, Specifications of Instruments.				
Unit –II	10 Hrs			
Signal Analyzers: AF, HF Wave Analyzers, Harmonic Distortion, Heterodyne	wave Analyzers,			
Spectrum Analyzers, Power Analyzers, Capacitance-Voltage Meters, Oscillators. S	Signal Generators:			
AF, RF Signal Generators, Sweep Frequency Generators, Pulse and Square wave Generators,				
Function Generators, Arbitrary Waveform Generator, Video Signal Generators, and Specifications				
Unit –III	9 Hrs			
Oscilloscopes: CRT, Block Schematic of CRO, Time Base Circuits, Lissajou	us Figures, CRO			
Probes, High Frequency CRO Considerations, Delay lines, Applications: Measurement	rement of Time,			
Daried and Fraguency Specifications Special Dyraces Oscillescopes: Dual Tr				

Probes, High Frequency CRO Considerations, Delay lines, Applications: Measurement of Time, Period and Frequency Specifications. Special Purpose Oscilloscopes: Dual Trace, Dual Beam CROs, Sampling Oscilloscopes, Storage Oscilloscopes, Digital Storage CROs.

Unit –IV10 HrsTransducers: Classification, Strain Gauges, Bounded, unbounded; Force and DisplacementTransducers, Resistance Thermometers, Hotwire Anemometers, LVDT, Thermocouples, Synchros,Special Resistance Thermometers, Digital Temperature sensing system, Piezoelectric Transducers,Variable Capacitance Transducers, Magneto Strictive Transducers, gyroscopes, accelerometers.

9 Hrs

	> 110
Bridges: Wheat Stone Bridge, Kelvin Bridge, and Maxwell Bridge.	
Measurement of Physical Parameters: Flow Measurement, Displacement Me	ters, Liquid level
Measurement, Measurement of Humidity and Moisture, Velocity, Force, Pressure	– High Pressure,
Vacuum level, Temperature -Measurements, Data Acquisition Systems.	

Unit –V

Text Books:

1. Modern Electronic Instrumentation and Measurement Techniques: A.D. Helbincs, W. D. Cooper: PHI 5th Edition 2003.

2. Electronic Instrumentation: H. S. Kalsi – TMH, 2nd Edition 2004.

References:

- 1. Electrical and Electronic Measurement and Measuring Instruments A K Sawhney, Dhanpat Rai & Sons, 2013.
- 2. Electronic Instrumentation and Measurements David A. Bell, Oxford Univ. Press, 1997.
- 3. Industrial Instrumentation: T.R. Padmanabham Springer 2009.
- 4. Electronic Measurements and Instrumentation K. Lal Kishore, Pearson Education 2010.

Course Outcomes:

After the completion of the course students will able to:

- **CO1:** Measure electrical parameters with different meters and understand the basic definition of measuring parameters.
- **CO2:** Use various types of signal generators, signal analyzers for generating and analyzing various real-time signals.
- CO3: Operate an Oscilloscope to measure various signals.

CO4: Measure various physical parameters by appropriately selecting the transducers.

CO5: Understand the design of oscilloscopes for different applications.

CO6: Design different transducers for measurement of different parameters.

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

]		- RG 22 Regulation ND ACTUATOR		
Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type
22A0438T	3:0:0	3	CIE:30	3 Hours	PEC
			SEE:70		
Course Objectiv	ves:			•	•
• To understan	nd modelling co	oncept;			
• To get expos	sed with basics	of Sensors, Act	tuators and Mecha	tronics;	
• To learn diff	ferent types of S	Sensors;			
To study MI	EMS and smart	Sensors;			
• To study fe	ew case studie	s on advanced	driver assistance	e system and self	driving cars as
Applications	s of Sensors, ac	tuators and Me	chatronics concep	ts.	
• To develop	problem solvin	ng skills and ex	xperience in real	time applications t	hrough few case
studies	-				C
		Syllabus			Total Hours: 48
		Unit –I:: Sens	ors		10 Hrs
Difference betwee	een sensor, tran	smitter and trai	nsducer - Primary	measuring element	ts - selection and
				tability, linearity	
	0		•	ission - Types of s	•
-	-		-	operation, const	-
	-	-	-	Rings, Strain Gau	
		-	-	rometer, Photo-res	-
		nit –II:: Transo		Tometer, Flioto-les	9 Hrs
Inductive tran				ction details, cha	
				ice transducer, sync	
				etails, characteristi	
-				s:- capacitor micror	-
pressure sensor,	• -	•	ing approacion		shohe, eupachtie
r the		nit –III:: Actu	ators		10 Hrs
Definition, types	s and selection	of Actuators;	linear; rotary; L	ogical and Contir	nuous Actuators,
Pneumatic actua	tor- Electro-Pr	eumatic actuat	or; cylinder, rota	ry actuators, Mech	nanical actuating
system: Hydraul	ic actuator - C	Control valves;	Construction, Cl	naracteristics and	Types, Selection
criteria.					
Electrical Actu	ating systems	: Solid-state	switches, Solenoi	ds, Electric Moto	rs- Principle of
operation and its	application: D	O.C motors - AG	C motors - Single	phase & 3 Phase I	Induction Motor;
Synchronous Mo	otor; Stepper mo	otors - Piezoele	ctric Actuator.		
τ	Init –IV:: Mici	o Sensors an	d Micro Actuato	ors	10 Hrs
	-	-	-	sure micro sensor	-
			ors, chemical sens	ors, biosensors, te	mperature micro
sensors and flow			e memory offect	-one way two y	way and neouda
Micro Actualo	s. Actuation	principle, shap	c memory effects	s-one way, two w	vay and pseudo

B. Tech ECE – RG 22 Regulation elasticity. Types of micro actuators- Electrostatic, Magnetic, Fluidic, Inverse piezo effect, other principles. **Unit –V:: Sensor Materials and Processing Techniques** 9 Hrs Materials for sensors: Silicon, Plastics, metals, ceramics, glasses, nano materials Processing techniques: Vacuum deposition, sputtering, chemical vapour deposition, electro plating, photolithography, silicon micro machining, Bulk silicon micro machining, Surface silicon micro machining, LIGA process. **Text Books:** 1. Patranabis.D, "Sensors and Transducers", Wheeler publisher, 1994. 2. Sergej Fatikow and Ulrich Rembold, "Microsystem Technology and Microbotics", First edition, Springer – Verlag NEwyork, Inc, 1997. 3. Jacob Fraden, "Hand Book of Modern Sensors: Physics, Designs and Application" Fourth edition, Springer, 2010. **References:** 1. Robert H Bishop, "The Mechatronics Hand Book", CRCPress, 2002. 2. Thomas. G. Bekwith and Lewis Buck.N, Mechanical Measurements, Oxford and IBH publishing Co. Pvt. Ltd., 3. Massood Tabib and Azar, "Microactuators Electrical, Magnetic, thermal, optical, mechanical, chemical and smart structures", First edition, Kluwer academic publishers, Springer, 1997. 4. Manfred Kohl, "Shape Memory Actuators", first edition, Springer. **Course Outcomes:** After the completion of the course students will able to: **CO1:** Explain fundamental physical and technical base of sensors and actuators, CO2: Describe basic laws and phenomena that define behaviour ofsensors and actuators. **CO3:** Analyze various premises, approaches, procedures and results related to sensors and actuators.

CO4: Create analytical design and development solutions for sensors and actuators.

CO5: Describe development and application of sensors and actuators

CO6: Understanding basic laws and phenomena on which operation ofsensors and actuatorstransformation of energy.

RADAR & SATELLITE COMMUNICATIONS

Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type
22A0439T	3:0:0	3	CIE:30	3 Hours	PEC
			SEE:70		

Course Objectives:

- To explore the concepts of radar and its frequency bands.
- To understand Doppler Effect and get acquainted with the working principles of CW radar, FM-CW radar.
- To impart the knowledge of functioning of MTI and Tracking Radars, design of a Matched Filter in radar receivers.
- To acquire foundation in orbital mechanics and launch vehicles for the satellites.
- To understand the concepts of satellite navigation and GPS.

Syllabus	Total Hours: 48
Unit –I	10 Hrs
Basics of Radar: Introduction, Maximum Unambiguous Range, simple Radar range	Equation, Radar
Block Diagram and Operation, Radar Frequencies and Applications. Prediction	ction of Range
Performance, Minimum Detectable Signal, Receiver Noise, Illustrative Problems.	
Radar Equation : Modified Radar Range Equation, SNR, probability of detection	n, probability of
False Alarm, Integration of Radar Pulses, Radar Cross Section of Targets (simple	targets - sphere,
cone-sphere), Creeping Wave, Transmitter Power, PRF and Range Ambiguities.	, System Losses
(qualitative treatment), Illustrative Problems.	
Unit –II	10 Hrs

CW and Frequency Modulated Radar: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar. Illustrative Problems, FM-CW Radar: Range and Doppler Measurement, Block Diagram and Characteristics, FM-CW altimeter, Multiple Frequency CW Radar

MTI and Pulse Doppler Radar: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Nth Cancellation Staggered PRFs. Range Gated Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler Radar.

Unit –III	9 Hrs					
Tracking Radar: Tracking with Radar, Sequential Lobing, Conical Scan, Mono pulse Tracking						
Radar - Amplitude Comparison Mono pulse (one- and two- coordinates), Phase Co	omparison Mono					
pulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Tracker	·s.					
Detection of Radar Signals in Noise : Introduction, Matched Filter Receiv	ver – Response					
Characteristics and Derivation, Correlation detection and Cross-correlation Received	er, Efficiency of					
Non-matched Filters, Matched Filter with Non-white Noise, Noise Figure and Noise	Temperature.					
Unit –IV	10 Hrs					
Introduction: Origin of Satellite Communications, Historical Back-ground, Ba	sic Concepts of					
Satellite Communications, Frequency allocations for Satellite Services, Application	s, Future Trends					

of Satellite Communications. **Orbital Mechanics And Launchers:** Orbital Mechanics, Look Angle determination, Orbital perturbations, Orbit determination, launches and launch vehicles, Orbital effects in communication

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING B. Tech ECE – RG 22 Regulation

systems performance.	
Unit –V	9 Hrs
Satellite Sub Systems: Attitude and orbit control system, telemetry, tracking,	
monitoring, power systems, communication subsystems, Satellite antenna Equipmer	nt reliability and
Space qualification.	
Satellite Navigation & Global Positioning System: Radio and Satellite Navigation	
Location principles, GPS Receivers and codes, Satellite signal acquisition, GPS Navi	
GPS signal levels, GPS receiver operation, GPS C/A code accuracy, Differential GPS Text Books:	
1. Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition,	2nd Ed 2007
 Satellite Communications – Timothy Pratt, Charles Bostian and Jeremy Allnu 	
Publications, 2ndEdition, 2003.	, , , , , , , , , , , , , , , , , , ,
References:	
1. Radar: Principles, Technology, Applications – Byron Edde, Pearson Education, 2	2004.
2. Radar Principles – Peebles, Jr., P.Z., Wiley, New York, 1998.	
3. Satellite Communications – Dennis Roddy, McGraw Hill, 2nd Edition, 1996	
4. Satellite Communications Engineering – Wilbur L. Pritchard, Robert A Nelso	on and Henri G.
Suyderhoud, 2 nd Edition, Pearson Publications, 2003.	
Course Outcomes:	
After the completion of the course students will able to:	
CO1: Derive the radar range equation and to solve some analytical problems.	
CO2: Understand the different types of radars and its applications.	
CO3: Describe the need and functioning of CW, FM-CW and MTI radars.	
CO4: Apply the concept of tracking and different tracking techniques, various comp	ponents of radar
receiver and its performance.	
CO5: Understand basic concepts and frequency allocations for satellite commu	nication, orbital
mechanics and launch vehicles.	
CO6: Analyze the concepts of GEO Stationary Satellite Systems and satellite navigat	ion

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

			RG 22 Regulation		
Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type
22A0440T	3:0:0	3	CIE:30 SEE:70	3 Hours	PEC
Course Objectiv	es:			I	
•	basics of an emb	edded system	and RTOS.		
		•		ystem & different	communication
• To provide kn	owledge on the	design proces	s of embedded sys	tem applications.	
		Syllabus			Total Hours: 48
Unit -	-I: INTRODU(CTION TO E	MBEDDED SYS	TEMS	10 Hrs
complexity, Purp specification, arc	oose of embedd hitecture design,	led systems, ' , designing ha	The embedded sy	systems based on ystem design proce are, components, sy led systems.	ess-requirements,
	Unit –II: TYP	ICAL EMBE	DDED SYSTEM	[10 Hrs
	• •	1 1	-	fic processors, ASIC	
selection for eml	bedded systems, ish button swite	, Sensors, act ch, other sub	uators, I/O compo- systems: reset c	face, memory shad onents: seven segm ircuit, brownout pr	nent LED, relay,
		U	ON INTERFAC	£	9 Hrs
Onboard commu	nication interfa	ces-I2C, SPI	, CAN, parallel	interface; External igBee, GPRS, GSM	communication
Unit –IV: EN	IBEDDED FIR	RMWARE DE	ESIGN AND DEV	ELOPMENT	10 Hrs
	ded firmware de	evelopment la		pproach, operating language based de	
Unit -	V: RTOS BAS	ED EMBEDI	DED SYSTEM D	ESIGN	9 Hrs
multitasking, tas shared memory, Communication/ Text Books:	k scheduling: n message passing Synchronization	on-pre-emptiv g, Remote Pro I Issues, Task	ve and pre-emptive cedure Call and S Synchronization T	-	communication
	•		ı KV, Mc Graw H Morgan Kaufman	n (second edition).	
References:	*	•			
 Embedded S Embedded S Embedded S 	ystems- An integ 1 Systems – Raj	grated approac	ch - Lyla b das, Pe	wiley. arson education 201	2.
 Embedded S Embedded S Embedded S Embedded Course Outcome 	ystems- An integ 1 Systems – Raj es:	grated approac Kamal, TMH	ch - Lyla b das, Pe	•	2.
 Embedded S Embedded S Embedded S Embedded S Embedded A 	ystems- An integ 1 Systems – Raj es: ion of the course	grated approad Kamal, TMH e students will	ch - Lyla b das, Pe able to:	arson education 201	2.
 Embedded S Embedded S Embedded S Embedded S Course Outcome After the complet CO1: Identify ha 	ystems- An integ <u>1 Systems – Raj</u> es: ion of the course rdware and software	grated approac Kamal, TMH e students will ware compone	ch - Lyla b das, Pe	arson education 201	2.
 Embedded S Embedded S Embedded S Embedded S Embedded S Course Outcome After the complet CO1: Identify ha CO2: Learn the b 	ystems- An integ l Systems – Raj es: ion of the course rdware and softw pasics of OS and	grated approad Kamal, TMH e students will ware compone RTOS	ch - Lyla b das, Pe able to: nts of an embedde	arson education 201	

			CE – RG 22 Regulat		
			CHINE LEARNING to CE,EEE,ME and		
Course Code	L:T:P:S	Credits	Exam Marks	Exam Duration	Course Type
22A0528T	3:0:0:0	3	CIE: 30 SEE:70	3 Hours	OEC
Course Objec	tives:				
• Study differ	ill enable stude basic concept rent learning a valuation of lea	s of Machine lgorithms	C		
		Syllab	ous		Total Hours:48
Unit -I	Introducti	on – Human	Learning & Machi	ine Learning	10Hrs
Applications of	Machine Lear Data in Machin	ning, Issues i	ing, Machine Learn n Machine Learning Data Preprocessing :		
Unit -II		Modelin	g and Evaluation		9Hrs
Evaluating Perfe	ormance of a N	Model, Impro	a Model, Model	f a Model	
Unit -III	S	upervised L	earning :Classificat	tion	10Hrs
Classification b	y Decision tre	e Induction,	n : Classification m Classification by Ba Naïve Baye's Classif	ck propagation, K	• •
Unit -IV		Supervised l	Learning : Regressi	on	10Hrs
-	-	-	Analysis, Types of Re egression, Logistic F	• •	•
Unit -V	U	Insupervised	Learning : Cluster	ring	9Hrs
-	rithm, Hierar	chical Clust	chniques, Partitionin ering Methods, De	-	-
Text Books: 1. Machine Lea	arning, SaikatI	Dutt, Subrama	anian Chandramouli,	Amit Kumar Das,	Pearson, 2019.
2. Stephen Mar and Hall/CR	/din, "Introduc rsland, "Mach C Machine Le	ine Learning earning and P	ine Learning", MIT -An Algorithmic Per attern Recognition S ntroduction to Machi	rspective", Second eries,2014.	_

Data Scientists", Oreilly.

Web Resources:

- 1. Andrew Ng, "Machine Learning Yearning"
- 2. https://www.deeplearning.ai/machine-learning-

3. https://www.cse.huji.ac.il/~shais/Understanding MachineLearning/index.html

Course Outcomes (CO):

On completion of this course, student will be able to:

CO1: Identify machine learning techniques suitable for a given problem

CO2: Characterize the machine learning algorithms as supervised learning and unsupervised learning

CO3: Solve the problems using various machine learning techniques

CO4: Design application using machine learning techniques

CO5: Analyze and Apply the suitable supervised learning methods for real-world problems

CO6:Understand the features of machine learning to apply on real world problems

			E – RG 22 Regulat CONTROL THE			
			(Only ECE)	JKY		
Course Code	L:T:P	Credits	Exam marks	Exam Durat	tion	Course Type
22A0257T	3:0:0	3	CIE:30 SEE:70	3 Hours		OEC
Course Objectiv	ves:		5			
The objectives of	f the course are	to make the st	tudents learn about:			
0			matrix and solution		ons	
-			bility concepts.	of state equatio	1151	
1		•	•			
-	ent, state estim	-	servers			
Lyapunov c	riterion for stat	oility analysis				
• Types of no	nlinearities, the	eir effect on sys	stem performance			
		Syllabus	5		Tota	l Hours:49
Unit-I	State Varial	ole Description	n and Solution of S	State Equation		10 Hrs
		I		1		
		-	ransfer functions an	-		-
of state model State transition Unit-II	– State diagram matrix. Comple	ms for continu ete response of Controllabili	ious time state mo continuous time sy ty and Observabil	dels – Solution estems ity	of sta	nte equations – 10 Hrs
of state model State transition Unit-II Tests for contr minimum energ of state models	- State diagram matrix. Comple rollability and sy control, time in Jordan can	ms for continuete response of Controllabili observability e invariant case	ous time state mo continuous time sy	dels – Solution stems ity me systems – lity, Controllabi	of sta Time ility an	te equations – 10 Hrs varying case, nd observability
of state model State transition Unit-II Tests for contr minimum energ	– State diagram matrix. Comple rollability and gy control, time in Jordan can nd observabilit	ms for continue ete response of Controllabili observability e invariant case nonical form a	tous time state mo continuous time sy ty and Observabil for continuous t e, Principle of Dua	dels – Solution stems ity me systems – lity, Controllabi l forms. Effect	of sta Time ility an	te equations – 10 Hrs varying case, nd observability
of state model State transition Unit-II Tests for contr minimum energ of state models controllability a Unit -III	- State diagram matrix. Comple rollability and sy control, time in Jordan can nd observabilit	ms for continu ete response of Controllabili observability e invariant case nonical form a cy. e Feedback Co	tous time state more continuous time sy ty and Observabil for continuous the e, Principle of Dua and other canonica	dels – Solution stems ity ime systems – lity, Controllabi l forms. Effect ervers	of sta Time ility an of sta	te equations – 10 Hrs varying case, nd observability ate feedback on 9 Hrs
of state model State transition Unit-II Tests for contr minimum energ of state models controllability a Unit -III Design of State observer. State	State diagram matrix. Complete rollability and gy control, time in Jordan can nd observabilit State Feedback Con	ms for continu ete response of Controllabili observability e invariant case nonical form a cy. Feedback Co trollers through ugh Kalman Fi	ious time state mo continuous time sy ty and Observabil for continuous ti e, Principle of Dua and other canonica ontrollers and Obs h Pole placement. H ilters	dels – Solution stems ity ime systems – lity, Controllabi l forms. Effect ervers Full-order obser	of sta Time ility an of sta	te equations – 10 Hrs varying case, nd observability ate feedback on 9 Hrs d reduced-order
of state model State transition Unit-II Tests for contr minimum energ of state models controllability a Unit -III Design of State	State diagram matrix. Complete rollability and gy control, time in Jordan can nd observabilit State Feedback Con	ms for continu ete response of Controllabili observability e invariant case nonical form a cy. Feedback Co trollers through ugh Kalman Fi	tous time state more continuous time sy ty and Observabil for continuous the e, Principle of Dua and other canonica ontrollers and Obs h Pole placement. H	dels – Solution stems ity ime systems – lity, Controllabi l forms. Effect ervers Full-order obser	of sta Time ility an of sta	te equations – 10 Hrs varying case, nd observability ate feedback on 9 Hrs
of state model State transition Unit-II Tests for contr minimum energy of state models controllability a Unit -III Design of State observer. State Unit -IV	State diagram matrix. Complete rollability and sy control, time in Jordan can nd observabilit State Feedback Con estimation thro	ms for continu ete response of Controllabili observability e invariant case nonical form a cy. Feedback Co trollers through ugh Kalman Fi Analysis o	ious time state mo continuous time sy ty and Observabil for continuous ti e, Principle of Dua and other canonica ontrollers and Obs h Pole placement. H ilters f Nonlinear System	dels – Solution stems ity ime systems – lity, Controllabi l forms. Effect ervers Full-order obser ns	of sta Time ility an of sta	te equations – 10 Hrs varying case, nd observability ate feedback on 9 Hrs d reduced-order 10 Hrs
of state model State transition Unit-II Tests for contr minimum energy of state models controllability a Unit -III Design of State observer. State Unit -IV Introduction to	State diagram matrix. Complete rollability and sy control, time in Jordan can nd observabilit State Feedback Con estimation thro	ms for continue ete response of Controllabili observability e invariant case nonical form a cy. Feedback Co trollers through ugh Kalman Fi Analysis o ystems, Types	ious time state mode continuous time sy ty and Observabil for continuous the e, Principle of Dua and other canonica ontrollers and Obs h Pole placement. I ilters f Nonlinear System of nonlinearities.	dels – Solution stems ity ime systems – lity, Controllabi l forms. Effect ervers Full-order obser ns Concept of	of sta Time ility an of sta ver an descri	te equations – 10 Hrs e varying case, ad observability ate feedback or 9 Hrs d reduced-order 10 Hrs bing functions,
of state model State transition Unit-II Tests for contr minimum energy of state models controllability a Unit -III Design of State observer. State Unit -IV Introduction to Derivation of d	State diagram matrix. Complete rollability and sy control, time in Jordan can nd observabilit State Feedback Con estimation thro nonlinear sy lescribing func	ms for continue ete response of Controllabili observability e invariant case nonical form a cy. Feedback Co trollers through ugh Kalman Fi Analysis o vstems, Types tions for Deac	ious time state mode continuous time sy ty and Observabil for continuous the e, Principle of Dua and other canonica ontrollers and Obs h Pole placement. I ilters f Nonlinear System of nonlinearities. d zone, Saturation,	dels – Solution stems ity ime systems – lity, Controllabi l forms. Effect ervers Full-order obser ns Concept of backlash, relay	of sta Time ility an of sta ver an descri	te equations – 10 Hrs e varying case, nd observability ate feedback on 9 Hrs d reduced-order 10 Hrs bing functions, dead zone and
of state model State transition Unit-II Tests for contr minimum energy of state models controllability a Unit -III Design of State observer. State Unit -IV Introduction to Derivation of d Hysteresis - Ju	State diagram matrix. Completing rollability and sy control, time in Jordan can nd observabilit State Feedback Con estimation thro nonlinear sy lescribing func- ump Resonance	ms for continue ete response of Controllabili observability e invariant case nonical form a cy. Feedback Co trollers through ugh Kalman Fi Analysis o vstems, Types tions for Deac ce. Introductio	ious time state mode continuous time sy ty and Observabil for continuous the e, Principle of Dua and other canonica ontrollers and Obs h Pole placement. I ilters f Nonlinear System of nonlinearities.	dels – Solution stems ity ime systems – lity, Controllabil forms. Effect ervers Full-order obser ns Concept of backlash, relay analysis, Meth	of sta Time ility an of sta ver an descri v with hod o	te equations – 10 Hrs e varying case, nd observability ate feedback on 9 Hrs d reduced-order 10 Hrs bing functions, dead zone and f Isoclines for

Stability in the sense of Lyapunov. Lyapunov's stability and Lypanov's instability theorems. Direct method of Lypanov for Linear and Nonlinear continuous time autonomous systems

Textbooks:

 (∞)

- 1. Modern Control Engineering, Katsuhiko Ogata, Prentice Hall, 5th Edition, 2010.
- Modern Control System Theory, M. Gopal, New Age International Publishers, Revised 2nd edition, 2005.

Course Outcomes(CO):

At the end of studying the course, the student should be able to:

CO1: Model a given dynamic system in state space and obtain the solution for the state equation

CO2: Test whether a given system is controllable and/or observable

CO3: Design a state feedback controller for pole placement

CO4: Design an observer for state estimation

CO5: Apply Lyapunov criterion and determine stability of a given system.

CO6: Analyze nonlinear systems

B. Tech ECE – RG 22 Regulation
ENVIRONMENTAL ECONOMICS

		ENVIRONM	IENTAL ECONO	MICS	
	(Comn	non to ME, CS	SE,AI&ML, CS, D	S, ECE,EEE)	
Course Code	L:T:P	Credits	Exam marks	Exam Durat	tion Course Type
22A0150T	3:1:0:0	3	CIE:30 SEE:70	3 Hours	OEC
Course Objectiv	ves:			·	
To teach regTo inculcateTo demonst	garding environ the knowledge tate the underst	mental degrad e of economics tanding of cost	elopment and econor ation and economic s of pollution and the benefit analysis of	c analysis of deg neir managemen environmental	t resources
			ciples of economics	s of blourversity	Total Hours:48
Syllabus		Sustain	able Development		
Unit-I		Sustain	able Development		9 Hrs
sustainable dev	velopment - 1	Limits to gro	•	vironmental Ku	kages - Meaning of aznets curve – The
Unit-II			nental Degradatio		9 Hrs
externality and principle.	market failure	- Economic a	nalysis of environ	mental degradat	ion – Equi –marginal
Unit -III		Econo	mics of Pollution		10 Hrs
Economics of o	ptimal pollutio	n, regulation,	monitoring and enf	forcement - Mai	naging pollution using
existing market	s: Bargaining	solutions - M	lanaging pollution	through marke	t intervention: Taxes,
subsidies and pe	ermits.				
Unit -IV		Cost –	Benefit Analysis		10 Hrs
	-				vironmental damage - st-benefit analysis and
Unit -V		Econom	ics Of Biodiversity	y	10 Hrs
	ecies -Policy r		•	U	individual species and Economics of Climate
	uction to Envi	ronmental Eco	nomics by N Har	lev I Shogren	and B. White Oxfor
	Press.(2001)				and D. WINC OAD
				1 1 1 1 1	
2. Blueprint London.(1		conomy by D	.W. Pearce, A. Ma	arkandya and E	E.B. Barbier Earthscar

Reference Books:

- 1. Environmental Economics: An Elementary Introduction by R.K. Turner, D.W. Pearce and I. Bateman Harvester Wheatsheaft, London. (1994),
- 2. Economics of Natural Resources and the Environment by D.W. Pearce and R.K. Turner Harvester Wheat sheaf, London. (1990),

E-resources:

1. https://nptel.ac.in/courses/109107171

Course Outcomes(CO):

On completion of this course, student will be able to

CO1: Understand the information on sustainable development and economics of energy

CO2: Understand the information regarding environmental degradation

CO3: Understand the information regarding economic analysis of degradation

CO4: The identification of economics of pollution and their management

CO5: The cost benefit analysis of environmental resources.

CO6: The principles of economics of biodiversity

 $\langle \! \! \! \rangle$

			ECE – RG 22 RO ZATIONAL BE	<u>v</u>				
Course Code	L:T:P:S	Credits						
22A0027T	3:1:0:0	3	CIE:30	3 Hours		OEC		
			SEE:70					
Course Objectiv	ves:							
			the functions and		-	•		
			izance of the imp		nizati	ion behaviour.		
			leading and moti					
			ated with organiza					
• Develop the	group dyna		loping team build	ing.		T. 4. 1 II		
		Syllabu	S			Total Hours:48		
Unit -I		Introduct	ion to Managem	ent		10Hrs		
Nature, Scope	and Funct	tions - Princ	iples of Manager	ment, Evolutio	on of	Management thought:		
-						, Behavioural, Human		
Relations Appr	oach - Moo	dern Theory -	Quantitative App	broach, System	s and	Contingency.		
Unit -II	Int	roduction to	Organizational l	Behavior		9Hrs		
Meaning, defini	ition, natur	re, scope an	d functions - O	rganizing Proc	cess -	– Making organizing		
effective-Unders	standing Inc	lividual Beha	viour–Attitude -P	erception –Lea	rning	-Personality.		
Unit -III		Percept	ion &Motivatior	1		10Hrs		
Theories of Mot	ivation- Ma	aslow's Hiera	urchy of Needs - H	Hertzberg's Tw	vo Fac	ctor Theory - Vroom's		
theory of expect	ancy – Mc	Cleland's the	eory of needs–Mc	Gregor's theor	ry X a	and theory Y- Adam's		
equity theory –	Locke's goa	al setting theo	ory– Alderfer's El	RG theory				
Unit -IV		Organi	zational Culture			9Hrs		
Introduction –	Meaning, s	scope, definit	ion, Nature - Org	ganizational Cl	imate	- Leadership - Traits		
Theory-Managerial Grid - Transactional Vs Transformational Leadership - Qualities of good								
Leader.								
Unit -V	Group Dynamics 10Hrs			10Hrs				
Introduction –	Meaning,	scope, defin	ition, Nature- T	ypes of group	os - I	Determinants of group		
behavior - Gro	oup process	s – Group D	evelopment - Gr	oup norms - (Group	cohesiveness - Small		
Groups - Gro	up decision	n making -	Team building -	-Conflict Mar	nagem	ent - Conflict in the		
organization– Conflict resolution								
organization– C	Conflict res	olution						

1. Luthans, Fred, Organisational Behaviour, McGraw-Hill, 12th edition 2011

2. P Subba Rao, Organisational Behaviour, Himalya Publishing House2017

Reference Books:

- 1. McShane, Organizational Behaviour, TMH 2009
- 2. Nelson, OrganisationalBehaviour, Thomson, 2009.
- 3. Robbins, P. Stephen, Timothy A. Judge, Organisational Behaviour, Pearson2009.
- 4. Aswathappa, Organisational Behaviour, Himalaya, 2009

Course Outcomes(CO):

On completion of this course, student will be able to:

- **CO1:** Understand the managerial functions and have some basic knowledge on various aspect of management.
- CO2: Develop cognizance of the importance of organization behaviour
- **CO3:** Demonstrate the applicability of the concept of organizational behavior to understand the behavior of people in the organization
- CO4: Demonstrate the ability to leading and motivation in organization

CO5: Develop the importance of Organizational leadership & culture

CO6: Build team building, group dynamics, group process, group norms to resolve conflicts in organization.

MICROPROCESSOR AND MICROCONTROLLER LAB

Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type
22A0441P	0:0:3	1.5	CIE:3	3 Hours	PCC
			SEE:70		

Course Objectives:

- Formulate problems and implement algorithms using Assembly language.
- Develop programs for different applications.
- Interface peripheral devices with 8086 and 8051.
- Use Assembly/Embedded C programming approach for solving real world problems

Syllabus

MINIMUM TWO EXPERIMENTS MUST CONDUCT:

List of Experiments:

- 1. PROGRAMS FOR 16 BIT ARITHMETIC OPERATIONS (Using various addressing modes)
 - a) Write an ALP to Perform Addition and Subtraction of Multi precision numbers.
 - b) Write an ALP to Perform Multiplication and division of signed and unsigned Hexadecimal numbers.
 - c) Write an ALP to find square, cube and factorial of a given number.
- 2. PROGRAMS INVOLVING BIT MANIPULATION INSTRUCTIONS
 - a) Write an ALP to find the given data is positive or negative.
 - b) Write an ALP to find the given data is odd or even.
 - c) Write an ALP to find Logical ones and zeros in a given data.
- 3. PROGRAMS ON ARRAYS FOR 8086
 - a) Write an ALP to find Addition/subtraction of N no 's.
 - b) Write an ALP for finding largest/smallest no.
 - c) Write an ALP to sort given array in Ascending/descending order.
- 4. PROGRAM FOR STRING MANIPULATIONS FOR 8086
 - a) Write an ALP to find String length.
 - b) Write an ALP for Displaying the given String.
 - c) Write an ALP for Comparing Two Strings.
 - d) Write an ALP to reverse String and Checking for palindrome.
- 5. PROGRAM FOR DIGITAL CLOCK DESIGN USING 8086
 - a) Write an ALP for Designing clock using INT 21H Interrupt.
 - b) Write an ALP for Designing clock using DOS Interrupt Functions.
 - c) Write an ALP for Designing clock by reading system time.
- 6. INTERFACING STEPPER MOTOR WITH 8086
 - a) Write an ALP to 8086 processors to Interface a stepper motor and operate it in clockwise by choosing variable step-size.
 - b) Write an ALP to 8086 processors to Interface a stepper motor and operate it in Anti clockwise by choosing variable step-size.
- 7. INTERFACING ADC/DAC WITH 8086
 - a) Write an ALP to 8086 processors to Interface ADC.
 - b) Write an ALP to 8086 processors to Interface DAC and generate Square Wave/Triangular Wave/Step signal.
- 8. COMMUNICATION BETWEEN TWO MICROPROCESSORS
 - a) Write an ALP to have Parallel communication between two microprocessors using 8255
 - b) Write an ALP to have Serial communication between two microprocessor kits using 8251.
- 9. PROGRAMS USING ARITHMETIC AND LOGICAL INSTRUCTIONS FOR 8051

- a) Write an ALP to 8051 Microcontroller to perform Arithmetic operations like addition, subtraction, Multiplication and Division.
- b) Write an ALP to 8051 Microcontroller to perform Logical operations like AND, OR and XOR.
- c) Programs related to Register Banks.
- 10. PROGRAM TO VERIFY TIMERS/COUNTERS OF 8051
 - a) Write a program to create a delay of 25msec using Timer0 in mode 1 and blink all the Pins of P0.
 - b) Write a program to create a delay of 50 µsec using Timer1 in mode 0 and blink all the Pins of P2.
 - c) Write a program to create a delay of 75msec using counter0 in mode 2 and blink all the Pins of P1.
 - d) Write a program to create a delay of 80 µsec using counter1 in mode 1 and blink all the Pins of P3.
- 11. UART OPERATION IN 8051
 - a) Write a program to transfer a character serially with a baud rate of 9600 using UART.
 - b) Write a program to transfer a character serially with a baud rate of 4800 using UART.
 - c) Write a program to transfer a character serially with a baud rate of 2400 using UART.
- 12. INTERFACING LCD WITH 8051
 - a) Develop and execute the program to interface16*2 LCD to 8051.
 - b) Develop and execute the program to interface LCD to 8051 in 4-bit or 8-bit mode.

Reference Books:

- 1. Kenneth.J.Ayala. The 8051 microcontroller, 3rd edition, Cengage learning, 2010.
- 2. Advanced microprocessors and peripherals-A.K ray and K.M.Bhurchandani, TMH, 2nd
- 3. edition2006.
- 4. The 8051 Microcontroller and Embedded Systems: Using Assembly and C by Muhammad AliMazidi, Janice GillispieMazidi, Second Edition.

Course Outcomes:

After the completion of the course students will able to:

CO1: Interface the peripheral devices with 8086 microprocessors.

CO2: Interface the peripheral devices with 8051microcontrollers.

CO3: Develop the algorithms using Assembly language.

CO4: Develop programs using embedded C language for different applications.

CO5: Develop the Assembly language programming approach for solving real world problems.

CO6: Develop the Embedded C programming approach for solving real world problems.

B. Tech ECE – RG 22 Regulation DIGITAL SIGNAL PROCESSING LAB

Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type	
22A0442P	0:0:3	1.5	CIE:30	3 Hours	PCC	
			SEE:70			
Syllabus						

LIST OF EXPERIMENTS: (Conduct all experiments).

Note: Any TWELVE of the experiments are to be conducted.

1. Generate the following standard discrete time signals.

i)Unit Impulse ii) Unit step iii) Ramp iv) Exponential v) Saw tooth

- 2. Generate sum of two sinusoidal signals and find the frequency response (magnitude and phase).
- 3. Implement and verify linear and circular convolution between two given signals.
- 4. Implement and verify autocorrelation for the given sequence and cross correlation between two given signals.
- 5. Compute and implement the N-point DFT of a given sequence and compute the power density spectrum of the sequence.
- 6. Implement and verify N-point DIT-FFT of a given sequence and find the frequency response (magnitude and phase).
- 7. Implement and verify N-point IFFT of a given sequence.
- Design IIR Butterworth filter and compare their performances with different orders (Low Pass Filter /High Pass Filter)
- Design IIR Chebyshev filter and compare their performances with different orders (Low Pass Filter /High Pass Filter).
- 10. Design FIR filter (Low Pass Filter /High Pass Filter) using different window techniques (rectangular, hamming and Kaiser)
- Design and verify Filter (IIR and FIR) frequency response by using Filter design and Analysis Tool.
- 12. Compute the Decimation and Interpolation for the given signal.
- 13. Real time implementation of an audio signal using a digital signal processor.
- 14. Compute the correlation coefficient for the two given audio signals of same length using a digital signal processor.

References:

1. Stephen J. Chapman, "MATLAB Programming for Engineers", Cengage, November 2012

Online Learning Resources/Virtual Labs:

1. https://www.vlab.co.in

B. Tech ECE – RG 22	Regulation		
Course Outcomes:			
After the completion of the course students will be abl	e to:		
CO1: Implement various DSP Algorithms using MAT	TLAB.		
CO2: Implement DSP algorithms with Digital Signal	Processor.		
CO3: Analyze and observe magnitude and phase	characteristics	(Frequency	response
Characteristics) of digital IIR-Butterworth filters	5.		
CO4: Analyze and observe magnitude and phase	characteristics	(Frequency	response
Characteristics) of digital IIR- Chebyshev filters			
CO5: Analyze and observe magnitude and phase	characteristics	(Frequency	response
Characteristics) of digital FIR filters using winder	ow techniques.		
CO6: Analyze and implement various digital filters.			

B. Tech ECE – RG 22 Regulation VLSI DESIGN LAB

Course Code	L:T:P	Credits	Exam. Marks	Exam Duration	Course Type
22A0443P	0:0:3	1.5	CIE:30	3 Hours	PCC
			SEE:70		

Course Objectives:

- Design any logic circuit using CMOS transistor.
- Use different software tools for analysis of circuits.
- Design layouts to the CMOS circuits.
- Use different software tools for analog layout

Syllabus

LIST OF EXPERIMENTS: (Conduct Any 10 experiments)

- 1. Design and analysis of CMOS Inverter
 - a) Implement CMOS inverter schematic using 90 nm technology and design its symbol.
 - b) Implement test bench for CMOS Inverter and check its output response.
 - c) Perform DC and AC analysis for CMOS inverter.
 - d) Check the performance of CMOS inverter using parametric sweep.
- 2. Design and analysis of NAND and NOR Logic gates
 - a) Implement NAND/NOR schematic using 90 nm technology and design its symbol.
 - b) Implement test bench for NAND/NOR and check its output response.
 - c) Perform DC and AC analysis for NAND/NOR.
 - d) Check the performance of NAND/NOR using parametric sweep.
- 3. Design and analysis of XOR and XNOR Logic gates
 - a) Implement XOR/XNOR schematic using 90 nm technology and design its symbol.
 - b) Implement test bench for XOR/XNOR and check its output response.
 - c) Perform DC and AC analysis for XOR/XNOR.
 - d) Check the performance of XOR/XNOR using parametric sweep.
- 4. Design of AOI logic
 - a) Design Schematic for AB+C'D and check its output response.
 - b) Design Schematic for AB'+C'D and check its output response.
 - c) Design Schematic for (A+B[•])(C+D) and check its output response.
 - d) Design Schematic for (A+B')(C'+D) and check its output response.
- 5. Design and analysis of Full adder
 - a) Design full adder using Full custom IC design.
 - b) Design full adder using Semi custom IC design.
- 6. Analysis of NMOS and PMOS characteristics
 - a) Implement test bench for NMOS/PMOS transistor.
 - b) Perform DC and AC analysis for NMOS/PMOS transistor
 - c) Check the performance of NMOS/PMOS transistor using parametric sweep.
- 7. Design and analysis of Common source amplifier
 - a) Implement CS amplifier schematic using 90 nm technology and design its symbol.
 - b) Implement test bench for CS amplifier and check its output response.

- c) Perform DC and AC analysis for CS amplifier.
- d) Check the performance of CS amplifier using parametric sweep.
- 8. Design and analysis of Common drain amplifier
 - a) Implement CD amplifier schematic using 90 nm technology and design its symbol.
 - b) Implement test bench for CD amplifier and check its output response.
 - c) Perform DC and AC analysis for CD amplifier.
 - d) Check the performance of CD amplifier using parametric sweep.
- 9. Design of MOS differential amplifier
 - a) Design differential amplifier schematic using 90 nm technology and its symbol.
 - b) Implement test bench for differential amplifier and check its output response.
 - c) Perform DC and AC analysis for differential amplifier.
 - d) Check the performance of differential amplifier using parametric sweep.
- 10. Design of two stage differential amplifier
 - a) Design two stage differential amplifier schematic using 90 nm technology and its symbol.
 - b) Implement test bench for two stage differential amplifier and check its output response.
 - c) Perform DC and AC analysis for two stage differential amplifier.
 - d) Check the performance of two stage differential amplifier using parametric sweep.
- 11. Design of Inverter Layout
 - a) Design and implement inverter schematic.
 - b) Design the layout for inverter using 90 nm tech file.
 - c) Perform LVS for schematic and layout
 - d) Check and remove all DRC violations.
 - e) Extract parasitic R and C in layout.
- 12. Design of NAND/NOR Layout
 - a) Design and implement NAND/NOR schematic.
 - b) Design the layout for inverter using 90 nm tech file.
 - c) Perform LVS for schematic and layout
 - d) Check and remove all DRC violations.
 - e) Extract parasitic R and C in layout

Software Required:

- i. Mentor Graphics Software / Equivalent Industry Standard Software.
- ii. Personal computer system with necessary software to run the programs and to implement

Course Outcomes:

After the completion of the course students will able to:

- **CO1:** Apply switching theory to the design logic theory problems.
- **CO2:** Design and simulate basic CMOS circuits like inverter, common source amplifier and differential amplifiers.
- CO3: Design and simulate combinational and sequential digital circuits.
- CO4: Design of various MOS differential amplifier
- CO5: Design and analysis of Common drain amplifier and Perform DC and AC analysis
- CO6: Design of NAND/NOR Layout and Extract parasitic R and C in layout

B. Tech ECE – RG 22 Regulation

JAVA PROGRAMMING (Common to EEE,ME and ECE)

(Common to EEE, WE and ECE)							
Course Code	L:T:P:S	Credits	Exam Marks	Exam Duration	Course Type		
22A0539	1:0:2:0	2	CIE: 30	3 Hours	SC		
			SEE:70				

Course Objectives:

This course will enable students to:

- To introduce the fundamental concepts of object-oriented programming to design & implement object oriented programming concepts in Java.
- To obtain knowledge about the principles of inheritance and polymorphism
- Learn the usage of Control structures in java
- To implement the concept of Array, interfaces, exception handling
- To understand the usage of Threads in java

0 5	
Syllabus	Total Hours:48

Module : 1

Fundamentals of Object Oriented Programming: Introduction, Object Oriented Paradigm, Basic concepts of OOP: Class, Object, Inheritance, Polymorphism, Abstraction, Encapsulation..

Task: introduction to Object Oriented Programming and its basic concepts.

Module : 2

Overview of Java Language: Introduction, Java features, Java program structure, parts of Java, Java Virtual Machine-Java versus C++, How to Compile & Executing a basic java program.

Task: Differences between Java and C++, Execute "Hello welcome to java" program

Module : 3

Variables-Identifiers-Literals- Data types: Integer literals-character literals-Floating point literals- String Literals, Variables, Keywords, Data types.

Task: implementing data types with variables, find valid/invalid variables, Identifiers

Module : 4

Operators: Arithmetic operators, Relational operators, Assignment operators, Conditional operators, Type casting/Type Conversion in java.

Task: Perform all arithmetic operators using a single program, program using typecast/type conversion

Module : 5

Java Statements: Input and Output Statements, Accepting Input from the Keyboard, Displaying output with System.out.printf(), Displaying Formatted output with String.format()Task: Write a program using I/O statements in java.

Module : 6

Control Structures: Conditional control statements :- if ..statement, if... else statement- if-else-if ladder, Switch statement

Task: Write a program to find a person is eligible for vote >18?, Largest number among 3

numbers?

Module: 7

Looping/Repetitive/Iterative statements: While statement- Do ...While statement-For Statement, Continue statement-Break statement.

Task: print N natural numbers, sum of N natural numbers, Armstrong number, Strong number using for statement.

Module:8

Arrays: Arrays, One-dimensional arrays, Creating an array, Find The Length Of An Array, Types of Arrays:-Two-dimensional arrays, Creating a two-dimensional array.

Task: Find the Nth Largest value in an array, Insert and Addition of values using array

Module : 9

Strings: Introduction to strings, Built in strings, Creating Strings, String reverse, String Concatenation, String comparison, Immutability of Strings

Task: write a program to Perform all string operations as single output

Module: 10

Classes , Objects& Methods: Introduction, Defining a class, Adding Variables, Object Creation, Initializing the Instance variables, Access Specifiers, Methods, Constructors, Method Overloading

Task: To implement Class and Object concept, Method Overloading program

Module :11

Interfaces: Interface, Multiple Inheritance using Interfaces.

Exception Handling: Errors in Java Program, Exceptions, throws clause, throw clause, Types of Exceptions,

Task: Implement a program using exception handling, write a program Multiple Inheritance using Interfaces.

Module: 12

Threads: Introduction, Creating Threads, Extending the Threads, Stopping and Blocking a Thread, Life Cycle of a Thread. single Tasking Using a Thread, Multi tasking Using ThreadsTask: Implement a program using Threads.

Reference Books:

- 1. Programming with Java by E.Balagurusamy.
- 2. Programming in Java by Sachin Malhotra, OXFORD University Press.
- 3. Java Complete Reference by Herbert Schildt.
- 4. John R.Hubbard, Programming with Java, Second Edition, Schaum's outline series, TATA McGraw-Hill Company.

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY: NELLORE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING B. Tech ECE – RG 22 Regulation

Web References:

- 1. https://www.javatpoint.com/java-tutorial
- 2. https://www.learnjavaonline.org/
- 3. https://www.tutorialspoint.com/java/index.htm
- 4. https://www.w3schools.com/java/
- 5. https://www.geeksforgeeks.org/java/

Course Outcomes (CO):

On completion of this course, student will be able to

CO1: Understand the basic concepts of OOP

CO2: Compare & Contrast basic constructs of C++ & Java

CO3: Develop a program on operators in Java

CO4: Apply Control statements to solve real time problems

CO5: Analyze the concepts of constructers, overloading, Inheritance and Interfaces in java

CO6: Implementing different types of Threads to solve real time problems

			ECE – RG 22 R ARCH METHOI	0		
Course Code	L:T:P:S	Credits	Exam marks	Exam Durat	tion C	Course Type
22A0032M	3-0-0	0	-	-		MC
Course Object	tives:					
 To make t To enable To make t To make t 	he students le them to know he students u he student lea	earn about va w the method nderstand va arn how to w	research and reservices rious types of data of statistical evalu- rious testing tools rite a research rep	a collection and uation in research	l sampling d	lesign
• To create	awareness on					20
		Syllabu	IS		Total Hou	rs: 30
Unit -I		. Found	ations of Researc	h		6 Hrs
Guidelines for	r Selecting a	nd Defining	Research –Type Research Problem xperimental Desig	n –Research I		
Unit -II		Sar	npling Design			7 Hrs
and Extrapola and Interviews Unit -III		ollection Met	hods –Primary Da	ta –Secondary	_	tionnaire Survey
		D	ata Analysis			0 1115
Correlation a	nd Regressic	on Analysis	-Method of Lea	st Squares –	Regression	vs Correlation -
Correlation vs	Determination	on – Types of	Correlations and	Their Applicat	ions	
Unit -IV		Interp	retation of Data			6 Hrs
	ampling Theo	ory –Samplir	is –Parametric vs ng Distribution –C	-	•	
Unit -V	Re	port Writing	g and Professiona	al Ethics		5 Hrs
-	er –Techniqu	es of Interpr	cs: Interpretation etation-Making S rch.		-	
Internation	nal Publishers Step Guide fo	Mathis, John	y:Methods and Te H.Jackson, "Research Methoo	1		C

Reference Books:

- 1. P.Narayana Reddy and G.V.R.K.Acharyulu, "Research Methodology and Statistical Tools", 1stEdition,Excel Books,New Delhi.
- 2. Donald R. "Business Research Methods", Cooper & Pamela S Schindler, 9thedition.
- 3. S C Gupta, "Fundamentals of Statistics",7thedition Himalaya Publications

Course Outcomes(CO):

On completion of this course, student will be able to:

CO1: Understand basic concepts of research and research problem

CO2: Demonstrate the knowledge of research processes

CO3: Read, comprehend and explain research articles in their academic discipline

CO4: Analyze various types of testing tools used in research

CO5: Understand the method of writing a research report **CO6:** Design a research paper without any ethical issues