

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

> CSE Course Structure (R20)

Semester - 1 (Theory - 5, Lab - 4)								
S.No	Course No	Course Name	Category	L-T-P	Credits			
1.	20A54101	Linear Algebra and Calculus	BS	3-0-0	3			
2.	20A51101T	Chemistry	BS	3-0-0	3			
3.	20A05201T	C-Programming & Data Structures	ES	3-0-0	3			
4.	20A02101T	Basic Electrical & Electronics Engineering	ES	3-0-0	3			
5.	20A03202	Engineering Workshop	LC	0-0-3	1.5			
6.	20A05202	IT Workshop	LC	0-0-3	1.5			
7.	20A51101P	Chemistry Lab	BS	0-0-3	1.5			
8.	20A05201P	C-Programming & Data Structures Lab	ES	0-0-3	1.5			
9.	20A02101P	Basic Electrical & Electronics Engineering Lab	ES	0-0-2	1.5			
Total								

Semester – 2 (Theory – 5, Lab – 5)								
S.No	Course No	Course Name	Category	L-T-P/D	Credits			
1.	20A54202	Probability & Statistics	BS	3-0-0	3			
2.	20A56201T	Applied Physics	BS	3-0-0	3			
3.	20A52101T	Communicative English	HS	3-0-0	3			
4.	20A05101T	Python Programming & Data Science	ES	3-0-0	3			
5.	20A03101T	Engineering Drawing	ES	1-0-0/2	2			
6.	20A03101P	Engineering Graphics Lab	ES	0-0-2	1			
7.	20A52101P	Communicative English Lab	HS	0-0-3	1.5			
8.	20A56201P	Applied Physics Lab	BS	0-0-3	1.5			
9.	20A05101P	Python Programming & Data Science Lab	ES	0-0-3	1.5			
10	20A52201	Universal Human Values	MC	3-0-0	0.0			
				Total	19.5			

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech -CSE – I Sem

L T P C 3 0 0 3

(20A54101) LINEAR ALGEBRA & CALCULUS

(Common to All Branches of Engineering)

Course Objectives:

- This course will illuminate the students in the concepts of calculus and linear algebra.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

UNIT -1

Matrices

Rank of a matrix by echelon form, normal form. Solving system of homogeneous and nonhomogeneous equations linear equations. Eigen values and Eigenvectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalisation of a matrix.

Learning Outcomes:

At the end of this unit, the student will be able to

- Solving systems of linear equations, using technology to facilitate row reduction determine the rank, eigen values and eigenvectors (L3).
- Identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics; (L3)

UNIT -2

Mean Value Theorems

Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof) related problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Translate the given function as series of Taylor's and Maclaurin's with remainders (L3)
- Analyze the behaviour of functions by using mean value theorems (L3)

UNIT -3

Multivariable Calculus

Partial derivatives, total derivatives, chain rule, change of variables, Jacobians, maxima and minima of functions of two variables, method of Lagrange multipliers.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. (L3)
- Acquire the Knowledge maxima and minima of functions of several variable (L1)
- Utilize Jacobian of a coordinate transformation to deal with the problems in change of variables (L3)

UNIT -4

Multiple Integrals

Double integrals, change of order of integration, change of variables. Evaluation of triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates. Finding areas and volumes using double and triple integrals.

Learning Outcomes:

At the end of this unit, the student will be able to

- Evaluate double integrals of functions of several variables in two dimensions using Cartesian and polar coordinates (L5)
- Apply double integration techniques in evaluating areas bounded by region (L4)
- Evaluate multiple integrals in Cartesian, cylindrical and spherical geometries (L5)

UNIT -5

Beta and Gamma functions

Beta and Gamma functions and their properties, relation between beta and gamma functions, evaluation of definite integrals using beta and gamma functions.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand beta and gamma functions and its relations (L2)
- Conclude the use of special function in evaluating definite integrals (L4)

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

Reference Books:

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.
- 4. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 5. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press
- 6. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 7. R.L. Garg Nishu Gupta, Engineering Mathematics Volumes-I &II, Pearson Education
- 8. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education

9. H. k Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand.

10. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- Develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- Utilize mean value theorems to real life problems (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional coordinate systems (L5)
- Students will become familiar with 3- dimensional coordinate systems and also learn the utilization of special functions

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech-CSE – I Sem L T P C

3 0 0 3

(20A51101T) CHEMISTRY

(CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT, ECE, EEE and IT)

Course Objectives:

- To familiarize engineering chemistry and its applications
- To train the students on the principles and applications of electrochemistry and polymers
- To introduce instrumental methods, molecular machines and switches

Unit 1: Structure and Bonding Models:

Planck's quantum theory, dual nature of matter, Schrodinger equation, significance of Ψ and Ψ^2 , applications to hydrogen, molecular orbital theory – bonding in homo- and heteronuclear diatomic molecules – energy level diagrams of O₂ and CO, etc. π -molecular orbitals of butadiene and benzene, calculation ofbond order.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Schrodinger wave equation to hydrogen atom (L3)
- Illustrate the molecular orbital energy level diagram of different molecular species (L2)
- Explain the calculation of bond order of O₂ and Co molecules (L2)
- Discuss the basic concept of molecular orbital theory (L3)

Unit 2: Modern Engineering materials:

Coordination compounds: Crystal field theory – salient features – splitting in octahedral and tetrahedral geometry. Properties of coordination compounds-Oxidation state, coordination, magnetic and colour.

Semiconductor materials, super conductors- basic concept, band diagrams for conductors, semiconductors and insulators, Effect of doping on band structures.

Supercapacitors: Introduction, Basic concept-Classification – Applications.

Nanochemistry: Introduction, classification of nanometerials, properties and applications of Fullerenes, carbonnano tubes and Graphines nanoparticles.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain splitting in octahedral and tetrahedral geometryof complexes (L2).
- Discuss the magnetic behaviour and colour of coordination compounds (L3).
- Explain the band theory of solids for conductors, semiconductors and insulators (L2)
- Demonstrate the application of Fullerenes, carbon nano tubes and Graphines nanoparticles (L2).

Unit 3: Electrochemistry and Applications:

Electrodes – concepts, reference electrodes (Calomel electrode, Ag/AgCl electrode and glass electrode); Electrochemical cell, Nernst equation, cell potential calculations and numerical problems,

potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations).

Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with examples.

Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteriesworking of the batteries including cell reactions; Fuel cells, hydrogen-oxygen, methanol fuel cells – working of the cells.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Nernst equation for calculating electrode and cell potentials (L3)
- Differentiate between ph metry, potentiometric and conductometric titrations (L2)
- Explain the theory of construction of battery and fuel cells (L2)
- Solve problems based on cell potential (L3)

Unit 4: Polymer Chemistry:

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, copolymerization (stereospecific polymerization) with specific examples and mechanisms of polymer formation.

Plastics - Thermoplastics and Thermosettings, Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers-Buna-S, Buna-N-preparation, properties and applications.

Conducting polymers – polyacetylene, polyaniline, polypyrroles – mechanism of conduction and applications.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain the different types of polymers and their applications (L2)
- Explain the preparation, properties and applications of Bakelite, Nylon-6,6, and carbon fibres (L2)
- Describe the mechanism of conduction in conducting polymers (L2)
- Discuss Buna-S and Buna-N elastomers and their applications (L2)

Unit 5: Instrumental Methods and Applications

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. Principle and applications of pH metry, UV-Visible,IR Spectroscopies. Solid-Liquid Chromatography–TLC, retention time.

Learning outcomes:

After completion of Unit IV, students will be able to:

- Explain the different types of spectral series in electromagnetic spectrum (L2)
- Understand the principles of different analytical instruments (L2)
- Explain the different applications of analytical instruments (L2)

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. G.V.Subba Reddy, K.N.Jayaveera and C. Ramachandraiah, Engineering Chemistry, Mc Graw Hill, 2020.
- 2. D. Lee, Concise Inorganic Chemistry, 5/e, Oxford University Press, 2008.
- 3. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 4. J.M.Lehn, Supra Molecular Chemistry, VCH Publications

Course Outcomes:

At the end of the course, the students will be able to:

- Compare the materials of construction for battery and electrochemical sensors (12)
- Explain the preparation, properties, and applications of thermoplastics & thermosetting, elastomers& conducting polymers. (12)
- Explain the principles of spectrometry, slc in separation of solid and liquid mixtures (12)
- Apply the principle of Band diagrams in application of conductors and semiconductors (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech -CSE – I Sem L T P C

3 0 0 3

(20A05201T) C-PROGRAMMING & DATA STRUCTURES

(Common to All Branches of Engineering)

Course Objectives:

- To illustrate the basic concepts of C programming language.
- To discuss the concepts of Functions, Arrays, Pointers and Structures.
- To familiarize with Stack, Queue and Linked lists data structures.
- To explain the concepts of non-linear data structures like graphs and trees.
- To learn different types of searching and sorting techniques.

UNIT-1

Introduction to C Language - C language elements, variable declarations and data types, operators and expressions, decision statements - If and switch statements, loop control statements - while, for, do-while statements, arrays.

Learning outcomes:

At the end of this unit, the students will be able to

- Use C basic concepts to write simple C programs. (L3)
- Use iterative statements for writing the C programs (L3)
- Use arrays to process multiple homogeneous data. (L3)
- Test and execute the programs and correct syntax and logical errors. (L4)
- Translate algorithms into programs. (L4)
- Implement conditional branching, iteration and recursion. (L2)

UNIT – 2

Functions, types of functions, Recursion and argument passing, pointers, storage allocation, pointers to functions, expressions involving pointers, Storage classes – auto, register, static, extern, Structures, Unions, Strings, string handling functions, and Command line arguments.

Learning outcomes:

At the end of this unit, the students will be able to

- Writing structured programs using C Functions. (L5)
- Writing C programs using various storage classes to control variable access. (L5)
- Apply String handling functions and pointers. (L3)
- Use arrays, pointers and structures to formulate algorithms and write programs.(L3)

UNIT-3

Data Structures, Overview of data structures, stacks and queues, representation of a stack, stack related terms, operations on a stack, implementation of a stack, evaluation of arithmetic expressions, infix, prefix, and postfix notations, evaluation of postfix expression, conversion of expression from infix to postfix, recursion, queues - various positions of queue, representation of queue, insertion, deletion, searching operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Describe the operations of Stack. (L2)
- Explain the different notations of arithmetic expression. (L5)
- Develop various operations on Queues. (L6)

UNIT - 4

Linked Lists – Singly linked list, dynamically linked stacks and queues, polynomials using singly linked lists, using circularly linked lists, insertion, deletion and searching operations, doubly linked lists and its operations, circular linked lists and its operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Analyze various operations on singly linked list. (L4)
- Interpret operations of doubly linked lists. (L2)
- Apply various operations on Circular linked lists. (L6)

UNIT-5

Trees - Tree terminology, representation, Binary trees, representation, binary tree traversals. binary tree operations, **Graphs** - graph terminology, graph representation, elementary graph operations, Breadth First Search (BFS) and Depth First Search (DFS), connected components, spanning trees. **Searching and Sorting** – sequential search, binary search, exchange (bubble) sort, selection sort, insertion sort.

Learning outcomes:

At the end of this unit, the students will be able to

- Develop the representation of Tress. (L3)
- Identify the various Binary tree traversals. (L3)
- Illustrate different Graph traversals like BFS and DFS. (L2)
- Design the different sorting techniques (L6)
- Apply programming to solve searching and sorting problems. (L3)

Text Books:

- 1. The C Programming Language, Brian W Kernighan and Dennis M Ritchie, Second Edition, Prentice Hall Publication.
- 2. Fundamentals of Data Structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed, Computer Science Press.
- 3. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. AnandaRao, Pearson Education.
- 4. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 5. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. Pradip Dey and Manas Ghosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E. Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K. Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T. Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes:

- 1. Analyse the basicconcepts of C Programming language. (L4)
- 2. Design applications in C, using functions, arrays, pointers and structures. (L6)
- 3. Apply the concepts of Stacks and Queues in solving the problems. (L3)
- 4. Explore various operations on Linked lists. (L5)
- 5. Demonstrate various tree traversals and graph traversal techniques. (L2)
- 6. Design searching and sorting methods (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech -CSE – I Sem L T P C

3 0 0 3

(20A02101T) BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Basic Electrical Engineering

Course Objectives:

- To introduce basics of electric circuits.
- To teach DC and AC electrical circuit analysis.
- To explain working principles of transformers and electrical machines.
- To impart knowledge on Power system generation, transmission and distribution

UNIT -1

DC & AC Circuits:

Electrical circuit elements (R - L and C) - Kirchhoff laws - Series and parallel connection of resistances with DC excitation. Superposition Theorem - Representation of sinusoidal waveforms - peak and rms values - phasor representation - real power - reactive power - apparent power - power factor - Analysis of single-phase ac circuits consisting of RL - RC - RLC series circuits, Resonance.

Learning Outcomes

At the end of this unit, the student will be able to

- Recall Kirchoff laws
- Analyze simple electric circuits with DC excitation
- Apply network theorems to simple circuits
- Analyze single phase AC circuits consisting of series RL RC RLC combinations

UNIT -2

DC & AC Machines:

Principle and operation of DC Generator - EMF equations - OCC characteristics of DC generator – principle and operation of DC Motor – Performance Characteristics of DC Motor - Speed control of DC Motor – Principle and operation of Single Phase Transformer - OC and SC tests on transformer - Principle and operation of 3-phase AC machines [Elementary treatment only]

Learning Outcomes

At the end of this unit, the student will be able to

- Explain principle and operation of DC Generator & Motor.
- Perform speed control of DC Motor
- Explain operation of transformer and induction motor.
- Explain construction & working of induction motor DC motor

UNIT -3

Basics of Power Systems:

Layout & operation of Hydro, Thermal, Nuclear Stations - Solar & wind generating stations - Typical AC Power Supply scheme - Elements of Transmission line - Types of Distribution systems: Primary & Secondary distribution systems.

Learning Outcomes

At the end of this unit, the student will be able to

- Understand working operation of various generating stations
- Explain the types of Transmission and Distribution systems

Text Books:

- 1. D. P. Kothari and I. J. Nagrath "Basic Electrical Engineering" Tata McGraw Hill 2010.
- 2. V.K. Mehta & Rohit Mehta, "Principles of Power System" S.Chand 2018.

References:

- 1. L. S. Bobrow "Fundamentals of Electrical Engineering" Oxford University Press 2011.
- 2. E. Hughes "Electrical and Electronics Technology" Pearson 2010.
- 3. C.L. Wadhwa "Generation Distribution and Utilization of Electrical Energy", 3rd Edition, New Age International Publications.

Course Outcomes:

The student should be able to

- Apply concepts of KVL/KCL in solving DC circuits
- Understand and choose correct rating of a transformer for a specific application
- Illustrate working principles of DC Motor
- Identify type of electrical machine based on their operation
- Understand the basics of Power generation, Transmission and Distribution

Part 'B'- Electronics Engineering

COURSE OBJECTIVES

- Understand principles and terminology of electronics.
- Familiar with the theory, construction, and operation of electronic devices.
- Learn about biasing of BJTs and FETs.
- Design and construct amplifiers.
- Understand the concept & principles of logic devices.

Unit-1:

Diodes and Applications: Semiconductor Diode, Diode as a Switch& Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Operation and Applications of Zener Diode, LED, Photo Diode.

Transistor Characteristics: Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point, Biasing of Transistor Configuration; Field Effect Transistor (FET) – Construction, Characteristics of Junction FET, Concepts of Small Signal Amplifiers –CE & CC Amplifiers.

Learning outcomes:

At the end of this unit, the student will be able to

- Remember and understand the basic characteristics of semiconductor diode. (L1)
- Understand principle of operation of Zener diode and other special semiconductor diodes. (L1)
- Analyze BJT based biasing circuits. (L3)
- Design an amplifier using BJT based on the given specifications. (L4)

Unit-2:

Operational Amplifiers and Applications: Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal Op-Amp, Concept of Virtual Ground; Op-Amp Applications - Inverting, Non-Inverting, Summing and Difference Amplifiers, Voltage Follower, Comparator, Differentiator, Integrator.

Learning outcomes:

At the end of this unit, the student will be able to

- Describe operation of Op-Amp based linear application circuits, converters, amplifiers and non-linear circuits. (L2)
- Analyze Op-Amp based comparator, differentiator and integrator circuits. (L3)

Unit-3:

Digital Electronics: Logic Gates, Simple combinational circuits–Half and Full Adders, BCD Adder.Latches and Flip-Flops (S-R, JK andD), Shift Registers and Counters.Introduction to Microcontrollers and their applications (Block diagram approach only).

Learning outcomes:

At the end of this unit, the student will be able to

- Explain the functionality of logic gates. (L2)
- Apply basic laws and De Morgan's theorems to simplify Boolean expressions. (L3)
- Analyze standard combinational and sequential circuits. (L4)
- Distinguish between 8085 & 8086 microprocessors also summarize features of a microprocessor. (L5)

Text Books:

- 1. R.L.Boylestad& Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2007.
- 2. Ramakanth A. Gayakwad, Op-Amps & Linear ICs, 4thEdition, Pearson, 2017.

- 3. R. P. Jain, Modern Digital Electronics, 3rd Edition, Tata Mcgraw Hill, 2003.
- 4. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd Edition, Pearson, 2012.

Reference Books:

- 1. SantiramKal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India, 2002.
- 2. R. S. Sedha, A Text Book of Electronic Devices and Circuits, S.Chand& Co,2010.
- 3. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

COURSE OUTCOMES:

After the completion of the course students will able to

- Explain the theory, construction, and operation of electronic devices.
- Apply the concept of science and mathematics to explain the working of diodes and its applications, working of transistor and to solve the simple problems based on the applications
- Analyze small signal amplifier circuits to find the amplifier parameters
- Design small signal amplifiers using proper biasing circuits to fix up proper Q point.
- Distinguish features of different active devices including Microprocessors.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech-CSE– I Sem L T P C

(20A03202) ENGINEERING WORKSHOP

(Common to All Branches of Engineering)

Course Objective:

To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

List of Topics

Wood Working:

Familiarity with different types of woods and tools used in wood working and make following joints

a) Half - Lap joint b) Mortise and Tenon joint c) Corner Dovetail joint or Bridle joint

Sheet Metal Working:

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two wheeler tyre

Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

- a) Parallel and series b) Two way switch c) Godown lighting
- d) Tube light e) Three phase motor f) Soldering of wires

Course Outcomes:

After completion of this lab the student will be able to

- Apply wood working skills in real world applications. (13)
- Build different objects with metal sheets in real world applications. (13)
- Apply fitting operations in various applications. (13)
- Apply different types of basic electric circuit connections. (13)
- Use soldering and brazing techniques. (l2)

Note: In each section a minimum of three exercises are to be carried out.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech -CSE – I Sem L T P C

0 0 3 1.5

(20A05202) IT WORKSHOP

(Common to All Branches of Engineering)

Course Objectives:

- To make the students know about the internal parts of a computer, assembling and dissembling a computer from the parts, preparing a computer for use by installing the operating system
- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations and LAteX
- To learn about Networking of computers and use Internet facility for Browsing and Searching

Preparing your Computer

Task 1:

Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2:

Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods

Task 3:

Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4:

Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet

Task 5:

Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc. should be done by the student. The entire process has to be documented.

Task 6:

Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc. If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating email account.

Task 7:

Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc. **Productivity tools**

Task 8:

Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered, Image Manipulation tools.

Task 9:

Presentations: creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colours, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show.

Task 10:

Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet

Task 11:

LateX: Introduction to Latex and its installation and different IDEs. Creating first document using Latex, using content into sections using article and book class of LaTeX. Styling Pages: reviewing and customizing different paper sizes and formats. Formatting text (styles, size, alignment, colors and adding bullets and numbered items, inserting mathematical symbols, and images, etc.). Creating basic

tables, adding simple and dashed borders, merging rows and columns. Referencing and Indexing: cross-referencing (refer to sections, table, images), bibliography (references).

References:

- 1. Introduction to Computers, Peter Norton, McGraw Hill
- 2. MOS study guide for word, Excel, Powerpoint& Outlook Exams, Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs, Bigelows, TMH
- 6. Lamport L. LATEX: a document preparation system: user's guide and reference manual. Addison-wesley; 1994.

Course Outcomes:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- Prepare the Documents using Word processors and Prepare spread sheets for calculations .using excel and also the documents using LAteX.
- Prepare Slide presentations using the presentation tool.
- Interconnect two or more computers for information sharing.
- Access the Internet and Browse it to obtain the required information.

Note: Use open source tools for implementation of the above exercises.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech-CSE – I Sem L T P C

0 0 3 1.5

(20A51101P) CHEMISTRY LAB

(CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT, ECE, EEE and IT)

Course Objectives:

• Verify the fundamental concepts with experiments

List of Experiments:

- 1. Measurement of 10Dq by spectrophotometric method
- 2. Models of potential energy surfaces
- 3. Conductometrictitration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base
- 4. Determination of cell constant and conductance of solutions
- 5. Potentiometry determination of redox potentials and emfs
- 6. Determination of Strength of an acid in Pb-Acid battery
- 7. Preparation of a Bakelite and measurement of its mechanical properties (strength.).
- 8. Verify Lambert-Beer's law
- 9. Thin layer chromatography
- 10. Identification of simple organic compounds by IR.
- 11. Preparation of nanomaterial's by precipitation
- 12. Estimation of Ferrous Iron by Dichrometry.

Course Outcomes:

At the end of the course, the students will be able to

- Determine the cell constant and conductance of solutions (L3)
- Prepare advanced polymer Bakelite materials (L2)
- Measure the strength of an acid present in secondary batteries (L3)
- Analysethe IR of some organic compounds (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech-CSE-I Sem L T P C

(20A05201P) C-PROGRAMMING & DATA STRUCTURES LAB

(Common to All Branches of Engineering)

Course Objectives:

- To get familiar with the basic concepts of C programming.
- To design programs using arrays, strings, pointers and structures.
- To illustrate the use of Stacks and Queues
- To apply different operations on linked lists.
- To demonstrate Binary search tree traversal techniques.
- To design searching and sorting techniques.

Week l

Write C programs that use both recursive and non-recursive functions

- i) To find the factorial of a given integer.
- ii) To find the GCD (greatest common divisor) of two given integers.
- iii) To solve Towers of Hanoi problem.

Week 2

- a) Write a C program to find both the largest and smallest number in a list of integers.
- b) Write a C program that uses functions to perform the following:i) Addition of Two Matrices ii) Multiplication of Two Matrices

Week 3

- a) Write a C program that uses functions to perform the following operations:
 - i) To insert a sub-string in to a given main string from a given position.

ii) To delete n characters from a given position in a given string.

Week 4

- a) Write a C program that displays the position or index in the string S where the string T begins, or -1 if S doesn't contain T.
- b) Write a C program to count the lines, words and characters in a given text.

Week 5

- a) Write a C Program to perform various arithmetic operations on pointer variables.
- b) Write a C Program to demonstrate the following parameter passing mechanisms:i) call-by-valueii) call-by-reference

Week 6

Write a C program that uses functions to perform the following operations:

- i) Reading a complex number
- ii) Writing a complex number
- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

Week 7

Write C programs that implement stack (its operations) using

- i) Arrays
- ii) Pointers

Week 8

Write C programs that implement Queue (its operations) using

- i) Arrays
- ii) Pointers

Week 9

Write a C program that uses Stack operations to perform the following:

- i) Converting infix expression into postfix expression
- ii) Evaluating the postfix expression

Week 10

Write a C program that uses functions to perform the following operations on singly linked list.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 11

Write a C program that uses functions to perform the following operations on Doubly linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 12

Write a C program that uses functions to perform the following operations on circular linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 13

Write a C program that uses functions to perform the following:

- i) Creating a Binary Tree of integers
- ii) Traversing the above binary tree in preorder, inorder and postorder.

Week 14

Write C programs that use both recursive and non-recursive functions to perform the following searching operations for a key value in a given list of integers:

- i) Linear search
- ii) Binary search

Week 15

Write a C program that implements the following sorting methods to sort a given list of integers in ascending order

- i) Bubble sort
- ii) Selection sort
- iii) Insertion sort

Text Books:

- 1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education.
- 2. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 3. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. PradipDey and ManasGhosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E.Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K.Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T.Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes

- Demonstrate basic concepts of C programming language. (L2)
- Develop C programs using functions, arrays, structures and pointers. (L6)
- Illustrate the concepts Stacks and Queues. (L2)
- Design operations on Linked lists. (L6)
- Apply various Binary tree traversal techniques. (L3)
- Develop searching and sorting methods. (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech-CSE – I Sem L T P C

0 0 3 1.5

(20A02101P) BASIC ELECTRICAL & ELECTRONICS ENGINEERING LAB (Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Electrical Engineering Lab

Course Objectives:

- To Verify Kirchoff's laws and Superposition theorem
- To learn performance characteristics of DC Machines.
- To perform various tests on 1- Phase Transformer.
- To Study the I V Characteristics of Solar PV Cell

List of experiments: -

- 1. Verification of Kirchhoff laws.
- 2. Verification of Superposition Theorem.
- 3. Magnetization characteristics of a DC Shunt Generator.
- 4. Speed control of DC Shunt Motor.
- 5. OC & SC test of 1 Phase Transformer.
- 6. Load test on 1-Phase Transformer.
- 7. I V Characteristics of Solar PV cell
- 8. Brake test on DC Shunt Motor.

Course Outcomes:

After completing the course, the student will be able to

- Understand Kirchoff's Laws & Superposition theorem.
- Analyze the various characteristics on DC Machines by conducting various tests.
- Analyze I V Characteristics of PV Cell
- Apply the knowledge to perform various tests on 1-phase transformer

Part B: Electronics Engineering Lab

Course Objectives:

- To verify the theoretical concepts practically from all the experiments.
- To analyze the characteristics of Diodes, BJT, MOSFET, UJT.
- To design the amplifier circuits from the given specifications.
- Exposed to linear and digital integrated circuits.

List Of Experiments:

1. PN Junction diode characteristics A) Forward bias B) Reverse bias.

2. Zener diode characteristics and Zener as voltage Regulator.

- 3. Full Wave Rectifier with & without filter.
- 4. Wave Shaping Circuits. (Clippers & Clampers)
- 5. Input & Output characteristics of Transistor in CB / CE configuration.
- 6. Frequency response of CE amplifier.
- 7. Inverting and Non-inverting amplifiers using Op-AMPs.
- 8. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
- 9. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

Tools / Equipment Required: DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

Course outcomes:

- Learn the characteristics of basic electronic devices like PN junction diode, Zener diode & BJT.
- Construct the given circuit in the lab
- Analyze the application of diode as rectifiers, clippers and clampers and other circuits.
- Design simple electronic circuits and verify its functioning.

Note: Minimum Six Experiments to be performed in each section.