

ELE-TIMES

Geethanjali Institute Of

Science And Technology

Faculty Coordinater A. Hari Krishna

Student Coordinators

Magazine of

Electronics and Communications Engineering

VISION:

To become a reputed learning centre producing competent professionals

MISSION:

> Provide Quality education through interactive teaching learning practices

> Establish Technology-enabled environment for core competencies including

Robotics.

- > Arrange Industry-Interaction to hone professional skills.
- > Organize activities to foster social skills and ethical values.

PROGRAM EDUCATIONAL OBJECTIVES:

- > PEO1: Professional Skills: Apply Engineering concepts to solve Electronics and Communication Engineering problems of social relevance.
- > PEO2: Software Knowledge: Design and develop Electronic devices and Systems for Industry or pursue research
- > PEO3: Lifelong Learning: Demonstrate competencies through continuous learning and adapt to multidisciplinary environment.
- PEO4: Engineering citizenship: Practice professional values and contribute the societal needs.

PROGRAM OUTCOME:

After few years of graduation, the graduates of B.Tech. (ECE) will be:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as amember or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being ableto comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes:

At the time of graduation, the student of B.Tech in Electronics and Communication Engineering Programme shall be able to

- PSO1: Professional skills: Apply principles of Analog and Digital Electronics, Communication Systems, Image processing, VLSI and Embedded Systems to solve diverse problems.
- PSO2: Software Knowledge: Develop solutions for complex engineering problems of social relevance by employing Xilinx, CC Studio, Micro Wind, Keil, NG Spice, Scilab tools.

ABOUT THE DEPARTMENT:

Department of Electronics and Communication Engineering (ECE) was established in the year 2008 and offers an under graduate program in ECE, with an initial intake of 60, and progressively increased to 180 by the year 2012. To accomplish the mission and vision of the Department, it has adequate infrastructural support with well equipped laboratories.

The Department aims at imparting the students with the latest technologies through NPTEL, Webinars, Spoken tutorials, Workshops and internships The Department also employs training programs such as 'College to Corporate' (C2C), International Institute of Entrepreneurship (i2E).

The Department of ECE has membership in professional societies like IEEE and IETE. Adequate encouragement and technical scaffolding are extended to the students to participate and excel in the national Level challenges

Head Of Department

Dr. MAHABOOB BASHA

The Department of Electronics and Communication Engineering is committed to render-quality and professional pedagogy to pioneering engineers. The Department magazine exemplifies the voyage transverse and exhibits the technical skills of our students. Congratulations to the editorial team for their determined efforts in bringing out this edition of technical magazine. I am proud to see that the students of our department have put in appreciable effort into creating the magazine. It is good to see that today's generation has not lost its literary roots, despite the perpetual efforts of e-Technology to extinguish the flames of the written word. This e-magazine is an exceptional proof that the literary flame is burning bright. I look forward to seeing the juniors taking up the reigns of this e- magazine in future, so that this tradition remains eternal..

VIRTUA L REA LITY

IMAGININGLIFE WITHOUT ELECTRONICS AND COMMUNICATION ENGINEERS

О Г Г

BL

 \triangleleft

A U T O N O M O U S U N M A N N E D A E R I A L

VEHICLE FOR EMERGENCY BLOOD DELIVERY

8

4

6

GRAPHENE - THEFUTURE?

10 ELECTRICVEHICLE

Introduction:

Virtual Reality (VR) is simulated experience that can be similar toor completely different from the real world. Currently standard VR systems use either VR headsets or multi projectedenvironments to generate realistic Images , sounds and other sensations that simulate a user's physical presence in a virtual environment. Applications of VR can include entertainment and educational purpose. A person using VR equipment is able to look around the artificial world, move around in it, and interact with virtual features or items. Other, distinct types of VR style technology include augmented reality and mixed reality. The term "virtual" has been used in the computer sense of "not physically existing but made to appear by software".

Software used in VR:

Virtual Reality Modeling Language (VRML), first introduced in 1994, was introduced for the development of "Virtual World" without dependency on headsets. Web-VR is an experimental Java script Application Programming Interface (API) that provides support for various VR devices, such as the HTC Vive, Oculus Rift, Google Cardboard or OSVR, in a web browser.

"The science of today is the technology of tomorrow." - Edward Teller

Hardware used in VR:

Modern VR headset displays are based on technology developed for smart phones including: gyroscopes and motion sensors for tracking head, hand and body position; screens for stereoscopic displays and small, lightweight and fast computer processor.

Methods of VR:

- Simulation-based VR: Driving Simulator is an example for this type. It gives a driver onboard experience of actual driving of an actual driver by predicting vehicle motion caused by driver input and feeding back corresponding visual, motion and audio cues to the driver.
- Projector-based VR: in projector-based VR, modeling of the real environment places a vital role in various VRapplications, such as robot navigation, construction modeling and airplane simulation.
- Head-mounted display (HMD): A HMD more fully immerses the user in a virtual world. A VR headset ideally includes two small high resolution OLED or LCD monitors which provide separate images for each eye for stereoscopic graphics rendering a 3D virtual world, a binaural audio system, rational and positional real time head tracking for six degrees of movements.
- Avatar-image based VR (AIBVR): With AIBVR, people can join the virtual environment in the form of real video as well as an avatar. One can participate in 3D distributed virtual environment as form as either a conventional avatar or a real video.
- Desktop-base VR: Desktop-based VR involves displaying a 3D
 virtual world on a regular desktop display without use of any specialized positional tracking equipment.

ELECTROERA

3

Types of VR:

Augmented Reality (AR):

AR is a type of VR technology that blends what the user sees in their real surrounding with digital contents generated by computer software. The additional software generated images with the virtual sense typically enhance how the real surrounding looks in some way. AR systems layer virtual information over a camera live feed into headsets or smart glasses or through a mobile device giving the user the ability to view 3D images. Mixed Reality (MR): MR is a merging of the real world and virtual world to produce new environments and visualisations where physical and digital objects co-exist and interact in real time.

Applications of VR:

- VR is most commonly used in entertainment applications such as video games and 3D cinemas. Consumer VR headsets were first released by video game companies in the early-mid 1990.
- 3D cinemas have been used for sporting events, fine art, music videos and short films.
- In social science and psychology, virtual reality offers a costeffective tool to study and replicate interactions in controlled environment.

Written By, Bandi Aruna 182U15A0401 Diddi Manvitha 182U15A0403

IMAGINING A LIFE WITHOUT ELECTRONICS AND COMMUNICATION ENGINEERS

Can we imagine our daily life without the electronic devices like mobile phone, laptop television, tablets, digital watch, internet banking, ATM cards, WI-FI, internet connection, microwave oven and much more.

NO WE CANNOT!!!!!

All this is possible due to E&C Engineers.

Imagine that one fine day where you decided to be an electronics and communication engineer. Your interest towards innovation made you attract towards this field making yourcareer. The demand for new electronics products in the market and the speedy research in this field makes ECE a better choice for once carrier in engineering.

ECE has been helped in various different fields as mentioned below:

INFANT MORTALITY RATE: Care monitor device was developed to reduce sudden infant death syndrome.

DISASTER RELIEF: These are some of the most inspiring inventions created to help survivors endure such calamity like flat-pack refugee shelters, radiation – detecting watch, solar powered, inflatable led light etc.

SPACE COMMUNICATION: Our activities in space is also increasing to be advanced in space communication, our communication system has to be very much advanced which is only possible through potential E&C engineers. This is also a very interesting field as many students have fantasies to do something in the field of space.

5

HUMANOID ROBOTS: In future humanoid robots are replacing persons work and making future much easier and simpler. Sooner all these gadgets are going to be a part of our lives. The best thing with ECE is that Robotic engineering is progressing with the introduction of butler bots which help in reducing human work remarkably.

All this makes ECE an interesting field. There is ample growth in the field of electronics and communication engineering, schemes like start up India fund the young professionals looking forward to be an entrepreneur in the digital world, by 2020 it will grow as one of the booming sectors in India.

In the next few decades there will be many revolutions in field ofECE as transparent smartphones is expected to be launched. On the other hand advancement in artificial intelligence has been taking the communication to next level where you can interact with the device and they respond your way. For all this a student must have strong technical knowledge, great experience at a practical level, very good industrial exposure and perseverance.By all these the world will grow in leaps and bounds, there is no denying in this fact.

Written By,

Atmakuru Sandeep 182U1A0408 Bakeeru Vijay Kumar 182U1A0410

"It is impossible for a man to learn what he thinks he already knows." - Epictetus

AUTONOMOUS UNMANNED AERIAL VEHICLE FOR EMERGENCY BLOOD DELIVERY

Increase in population has given rise to many problems, one such problem is lack of availability of blood in an emergency to the victim. It is a merely impossible to deliver blood on time due to heavy conjunction in traffic, lack of storage facilities and bad roads.

There are only 2903 blood banks across India. The count of blood banks is less than 3 for 10,00,000 people. So there is a need for faster delivery methods of blood. The usage of autonomous drones for this purpose is very efficient. The term Autonomous flight is used when pilots command is not used to fly an aircraft. Usually this mode is helpful for long flights. Autonomous flights can be achieved by having a flight controller like Pixhawk, APM on board along with these listed components given below.

Hybrid VTOL UAV: Hybrid UAVs combine vertical take-off and landing capability with the forward propulsion of a fixed wing UAV. In many hybrid VTOL UAVs, motors are incorporated into the aircraft's wings, which then transition for forward flight. These UAVs can be easily operated in cities as they do not require any runway for take-off and landing.

Mission planner: Mission Planner is a ground control station and calibration software for Plane, Copter and Rover. Using mission planner we can give the way points to the aircraft and also monitor the status of aircraft using this ground station.

Pixhawk 2.1: The Pixhawk 2.1 is a flexible autopilot intended primarily for manufacturers of commercial systems. It has 32 bit ARM cortex M4 processor with 14 PWM / Servo outputs and UART, I2C, CAN interface.

GPS: The Global Positioning System (GPS) is a network of about 30 satellites orbiting the Earth at an altitude of 20,000 km. The GPS module connects to the nearby satellites. Precision of the GPS increases with the number of satellites connected. And a minimum of 5 satellites has to be connected for an autonomous flight.

Telemetry: Telemetry is a device that gives all the information about the orientation and any errors in the controller. It is a must for any autonomous flight. We can track the position of the aircraft by using a telemetry system. A telemetry module is connected to both the ground station and the aircraft and both the modules can act as transmitter and receiver at the same time.

Fabricating an UAV with these components can be used to comfortably deliver up to 1 litre of blood package and travel a distance of 50km in less than 30 minutes and can become a life saver for a person in emergency.

Written By, Alapaka Prasanthi 192U1A0401

GRAPHENE - THE FUTURE ?

With the rapid advancement in the field of electronics, size, speed and flexibility have become the most important aspects. With the existing technology, we have to compromise with any one of these aspects. The only way to not compromise with these three aspects is by using graphene. Graphene is an allotrope of carbon in the form of a single layer of atom in 2-Dimensional Hexagonal lattice in which one atom forms each vertex. Graphene is so small that it is considered the world's first 2-D crystal. It was discovered by Russian born scientists Andre Geim and Kostya Novoselov in 2004 and they won the Nobel Prize for their discovery in 2010. Graphene has very high conduction capability because of its electron mobility. The mobility of electrons is 100 times faster than silicon and its heat conduction is also two times better than diamond. Graphene possesses electrical conductivity about 13 times better than copper. Graphene is harder than diamond and also more elastic than rubber. It is one of the strongest known materials if not the strongest material and also it is tougher than steel and yet lighter than aluminum.

Graphene has the potential to create the electronics materials which are now considered as science fiction. Graphene might find its place in almost all engineering fields. Because of its conductivity it can be used as superconducting material, solar electrode. conducting In biomedical cells, transparent application graphene can be used for improved drug delivery and it can also be used in cancer treatment. It can be used in flexible displays, efficient solar panels, bulletproof vest as it can absorb twice as much impact as Kevlar which is normally used in bullet proof vests. Coming to aerospace industry, graphene can be used in space propulsion due to its lightweight and strong interaction with light. One day it might find its place in supercomputer. The only problem with graphene is that, it is not easy to produce in large quantities at a decent quality and it costs about 100 dollars to 200 dollars per gram.

All these things can be possible only if we can produce it in bulk or is it all just hype for the material!

CTRONICS AND COMMUNICATION

9

ELECTRIC VEHICLE

World is too big for an individual to change it on their own but each one of us can change what we can; Our environment, our space, our people then we can change the world. There are several ways to change the world one of them is by switching to Electric Vehicles (EV).

Do Electric Vehicles really help the environment? yes it does. Because regular cars run on gasoline and pumps CO2 directly into the atmosphere where as EV's run on electricity they don't burn gasoline at all. So, no gas, no CO2.

The main reason why everyone must shift towards EV's is because of the increased versatility. EV's use coal to power it. And also, it can use nuclear, or waste, or wind, or solar, or any other method of producing electricity. With gas cars, you just have gas. The switch to electric cars gives us the option to switchto better ways of producing electricity, rather than being stuck with what we got.

Recently to tackle air pollution the Delhi Cabinet has approved apolicy on EV's. And the Indian government is also supporting switch to EV's by announcing 1.5lakh income tax deduction on interest paid on loans for the purchase of electric vehicles. **ELECTROERA**

"Scientists have become the bearers of the torch of discovery in our quest for knowledge." -Stephen Hawking

Norway is the world leader in the adoption of electric cars andother nations like France and UK announcing the plan to ban the sales of gas and diesel cars by 2040.

The EV's are actually nothing new, they started in 1832 well before the first gasoline vehicles. In fact, the first EV's were faster than 100km/hr was in 1899 called 'JAMAIS CONTENTE'. People were apparently satisfied with electric cars by 1910 they were almost twice as common on American roads as internal combustion engines. But then came Model T which at \$650, was significantly cheaper than the electric car's, and then these gas stations popped up all over the country.

There are many types of EV'S:

i) Plug in EV's these are any vehicles that can be recharged from an external source of electricity.

ii) Hybrid EV's these are the type of hybrid vehicles that combines conventional combustion engine system with electric propulsion sysem

iii) Railborne EVs The fixed nature of a rail line makes it relatively easy to power EVs through permanent overhead lines or electrified third rails, eliminating the need for heavy onboard batteries.

iv) Space rover vehicles :- Related to space exploration, like Manned and unmanned vehicles have been used to explore the Moon and other planets

v) Airborne EV's:- related to aircrafts, Currently flying electric aircraft include manned and unmanned aerial vehicles.

vi) Seaborne EV's: - Electric motors can and have also been used in sailboats instead of traditional diesel engines.

vii) Electrically powered spacecraft:- The power sources used for spacecraft are batteries, solar panels and nuclear power.

Electric motors don't require oxygen, unlike internal combustion engines; this is useful for submarines and for space rovers.

Recently Tesla has revealed its new model named Tesla Cybertruck. This is an all-electric battery-powered light commercial vehicle, with range estimates of 250–500 miles (400–800 km) and an estimated 0–60 mph time of 2. Major auto companies have invested heavily in this technology. Tesla has plans to build 1 million EVs by 2020.

EVs will soon become a reality for many drivers, auto companies and transport sector companies, and the impact of EVs on the environment will help create a greener future.

> Written By, Magam Chakradhar 202U1A0483 Nellore Teja Kumar 202U1A04A6

SMART POT

Smart Pot is the one of the methods to grow a plant effectively. Each and every thing related to grow a plant that is temperature, moisture, sunlight everything is monitored by Smart Pot. So, it will inform the owner about his/her plant. And also, Smart Pot saves water by turning off the water supply when plant is having enough amount of water. Two main effective things in this project is, it is concerned to save water and plant, which are very precious things on the earth. This project is modern way of growing plant. Because it includes technology like IoT and electronics things to monitor plants status. So, this is best way of growing plant effectively. It is our duty to protect the plant. If we allow to destroy our natural resources like this then it will be dangerous for all human beings. Because without oxygen we can't even imagine our life. Trees and plants are the source of oxygen. So, we have to thinkabout saving greenery on the earth. Our innovation should not be harmful towards natural resources.

- The smart pot which will nourishes the plant itself without human effort.
- The components which are used to make this smart pot are esp8266, Oled, DTH11 sensor, Soil moisture sensor, servo motor.

• No wonder it's the pot of choice for hydroponics gardeners. Smart Pot containers are reusable and last multiple seasons. While the expectant life span is at least 3-5 years, many customers are still using their Smart Pot planters a decade later. Perfect for just about any use – from home or balcony to professional growing operations.

GEETHANJALI INSTITUTE OF SCIENCE AND TECHNOLOGY:NELLORE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

LIST OF STUDENTS PLACED IN 2020-2021

<u>S.No</u>	Student Name	Enrollment	Employee Name	Appointment No
1	KODURU. VAMSI KRISHNA	No 162U1A0479	MPHASIS	DT20184439400
2	AKKIPEDDI SREE SOUMYA	172U1A0401	TCS NINJA	DT20184439098
3	AMARAMBEDU SARATHKUMAR	172U1A0402	TCS	MPHTH2020-0686
4	ANUMALASETTY VENKATA SAI SUJITH	172U1A0403	TECHM CERIUM	12212230
5	AVADHANAM LAKSHMISINDHUJA	172U1A0404	TCS NINJA	MPHTH2020-0663
6	AVULA PAVAN KUMAR	172U1A0405	TCS	51886812
7	NARAYANA BATHALA	172U1A0407	CTS	13937299
8	BHAVANASI VENKATA SUJITHA	172U1A0409	ACCENTURE	DT20163591311
9	JAIVARDHAN BUDARAPU	172U1A0410	TCS	MPHTH2020-0677
10	CHAKKA VENKATA BHAVANA	172U1A0411	TCS	13978717
11	CHALLA NAVEEN	172U1A0412	MPHASIS	DT20184441039
12	CHEEDELLA JEEVANA PRIYA	172U1A0414	INFOR	51886802
13	CHIRUVELLA NEELIMA	172U1A0415	MPHASIS	14294425
14	DAGGUMATI LAKSHMI KEERTHANA	172U1A0416	ACCENTURE	DT20184439497
15	DONTHAMSETTY GAYATHRI KAMAKSHI	172U1A0417	TCS NINJA	9347834
16	DEEPTHI KOTIAN	172U1A0418	MPHASIS	1606733
17	GANGAVARAPU SIREESHA	172U1A0419	MPHASIS	DT20184439483
18	SIREESHA GIDDALURU	172U1A0420	CTS	9347642
19	GUNDEBOINA SRAVYA	172U1A0421	TCS	14294720
20	KAKOLLU SAIJASWANTH	172U1A0423	TCS CODEVITA	14324023
21	KANYADARI SRILATHA	172U1A0424	TCS NINJA	DT20184439395
22	KATAMREDDY SWAPNIKA	172U1A0425	TCS	51897507
23	KHAJANA NAGA VYSHNAVI	172U1A0426	TCS	MPHTH2020-0667
24	KONA VENKATA RADHA SARVANI	172U1A0427	INFOSYS	51897516
25	KURAPATI VANAJA	172U1A0428	CAPGEMINI VLSI	MPHTH2020-0673
26	MARAM SYAM KUMAR	172U1A0429	CAPGEMINI	MPHTH2020-0716
27	MOHAMMED UZMA	172U1A0430	IBM	1606588

28	MUKKARA VENKATA PUSHPA KAVERI	172U1A0431	TCS NINJA	14324006
29	NASINA PRATHYUSHA	172U1A0432	INFOSYS	142994721
30	PABOLU LIKHITHA	172U1A0434	MPHASIS	14294425
31	PASUPULETI AMRUTHA	172U1A0435	ACCENTURE	178574
32	PENUMALLI SAI SIREESHA	172U1A0436	INFOSYS	51886766
33	POLAKA NAVANEETHA	172U1A0438	MINDTREE	9348530
34	PUCHAKAYALA SAHITHI	172U1A0439	ITC INFOTECH	51886815
35	PULIMI SILPA	172U1A0441	INFOSYS	MPHTH2020-0678
36	SANGAPU VENKATA ADITHYA	172U1A0443	TVARANA	51886810
37	SAPARAM VIKAS	172U1A0444	TVARANA	MPHTH2020-0666
38	SENAGALA HARISH	172U1A0445	TCS NINJA	DT20184439400
39	SETTY PRIYANKA	172U1A0446	TCS NINJA	DT20184439098
40	SHAIK NIHAL	172U1A0447	TCS NINJA	MPHTH2020-0686
41	SHAIK SABEEHA	172U1A0448	WIPRO	12212230
42	SHAIK SHAHID	172U1A0449	CAPGEMINI	MPHTH2020-0663
43	SIVANADHAN DILLI BABU	172U1A0450	HCL	51886812
44	SWAROOPA BELLAM	172U1A0451	TCS NINJA	13937299
45	SYED ARSHIYA	172U1A0452	TCS NINJA	DT20163591311
46	SYED SHAHID	172U1A0453	TCS NINJA	14294722
47	TENKAYALA SWATHI	172U1A0455	WIPRO	51893547
48	THIRUVEEDHI SANDEEP KUMAR	172U1A0457	MINDTREE	YES
49	UPPALA SRAVANI	172U1A0458	TCS NINJA	431520
50	VAYUGUNDLA SUSHMA	172U1A0459	ACCENTURE	51897572
51	VEERAMSETTY HYNDHAVI	172U1A0460	TCS NINJA	51897516
52	VELAMURI SAIJA	172U1A0461	MPHASIS	MPHTH2020-0713
53	ANUSHA YADURURI	172U1A0463	ACCENTURE	9353345
54	YELISETTI VINAY KUMAR	172U1A0464	TCS NINJA	DT20184439376
55	ALLAMPATI VENKATA YASWANTH REDDY	172U1A0467	SUNNY OPOTECH INDIA PVT.LTD	51918381
56	AYITHAYATHISH SAI	172U1A0468	SUNNY OPOTECH INDIA PVT.LTD	51900139
57	BAINA HARIKA	172U1A0470	MPHASIS	80012178
58	BALA SAIVENKATESH	172U1A0471	TCS NINJA	DT20184439474
59	BELLAMKONDA VAMSI	172U1A0473	CTS	51894873

60	DANDU KIRANKUMAR	172U1A0476	SUNNY OPOTECH INDIA PVT.LTD	13937367
61	DHANANKULA KALYANI	172U1A0477	CTS	DT20184439398
62	EEGA HARITHA	172U1A0480	CAPGEMINI	51894788
63	GADE JAGAN MOHAN	172U1A0482	CTS	51902799
64	GANGAVARAPU TEJASWI	172U1A0483	CAPGEMINI VLSI	MPHTH2020-0699
65	SUSMITHA GOPIREDDY	172U1A0484	ACCENTURE	9353634
66	IRLA MOHAN	172U1A0487	СТЅ	IN_152_263330BR_4469805
67	KANDULA ASHA	172U1A0490	ACCENTURE	9348706
68	KASTHURI CHANDANA	172U1A0491	INFOSYS	80012171
69	KONDIREDDY VISHNUPRIYA	172U1A0495	CAPGEMINI VLSI	
70	LAKKU LAVANYA	172U1A0496	TCS NINJA	9348818
71	MOHAMMAD AFISHA SULTHANA	172U1A0498	MPHASIS	51886569
72	BABI NAVURU	172U1A04A0	MPHASIS	14324029
73	P VINEETHA	172U1A04A5	SUNNY OPOTECH INDIA PVT.LTD	MPHTH2020-0709
74	PERNAMITTA LIKHITHA	172U1A04A6	MPHASIS	80012173
75	AJAYTEJA PONGURU,	172U1A04A9	CTS	1606583
76	POKURI LAKSHMI SAI CHARITHA	172U1A04B0	IBM	51905168
77	BHAVYA PULUGUNDLA	172U1A04B3	GENPACT	13937300
78	PUTTURU BHAGYA LAKSHMI	172U1A04B4	TCS NINJA	MPHTH2020-0684
79	PUVVADA VENKATA SUSHMITHA	172U1A04B5	TCS NINJA	MPHTH2020-0680
80	SK.ADIL	172U1A04B8	SUNNY OPOTECH INDIA PVT.LTD	9348818
81	SK.ASMA	172U1A04C0	CTS	51886569
82	SHANVAZ SHAIK	172U1A04C1	MPHASIS	14324029
83	SRIMANTHULA MONICA	172U1A04C2	INFOSYS	MPHTH2020-0709
84	VEDURLA SUJITH	172U1A04C4	ACCENTURE	9348818
85	VELLAMPALLI DIVYA SRI	172U1A04C5	SUNNY OPOTECH INDIA PVT.LTD	51886766
86	YADDALAPUDI SUPRIYA	172U1A04C7	ACCENTURE	9348530
87	SAIRUPA CHINTHALAPUDI	172U1A04D6	ACCENTURE	51886815
88	DONTHIREDDY VIJAYALAKSHMI	172U1A04D8	ACCENTURE	MPHTH2020-0678
89	GANGAPATNAM SAMPATH KUMAR	172U1A04E0	ACCENTURE	51886810
90	SAI HARSHA MARRIPATI	172U1A04F1	TCS	MPHTH2020-0666
91	SAI HARSHA MARRIPATI	172U1A04F1	SUNNY OPOTECH INDIA PVT.LTD	DT20184439400

92	MASTHAN SANDRAPALLI,	172U1A04G4	CTS	DT20184439098
93	SHAIK HAFEEZ	172U1A04G5	ACCENTURE	MPHTH2020-0686
94	SHAIK KALEEM	172U1A04G6	COGNIZANT	51886766
95	SHAIK MEHAIK	172U1A04G7	ACCENTURE	9348530
96	THANIPARTHI CHANIKYA	172U1A04H2	MPHASIS	51886815
97	THOTAPALLI MINAKSHI MOUNIKA	172U1A04H3	ACCENTURE	MPHTH2020-0678
98	GADIRAJU PAVANI PRIYA	182U5A0404	CTS	51886810
99	ΚΟΤΑ ΚΑΥΥΑ	182U5A0405	MPHASIS	MPHTH2020-0666
100	KOTHA RAJYALAKSHMI	182U5A0406	ACCENTURE	DT20184439400
101	MAHESWARLA HARIKA LAKSHMI	182U5A0408	HCL TECHNOLOGIES	DT20184439098
102	SANA SUPRIYA	182U5A0411	ACCENTURE	MPHTH2020-0686
103	SHAIK SAJID	182U5A0412	HCL TECHNOLOGIES	12212230
104	ADURU VENKATA SAI BHAVYASREE	172U1A0466	SUNNY OPOTECH	MPHTH2020-0663
105	BATTHALA PRATHYUSHA	172U1A0472	SUNNY OPOTECH	51886812
106	ISNAKULA SAICHITANYA	172U1A0488	SUNNY OPOTECH	13937299
107	PATI MURALI KRISHNA	172U1A04A3	SUNNY OPOTECH	DT20163591311
108	PERUMALLA LAKSHMI SAHITHYA	172U1A04A7	SUNNY OPOTECH	14294722
109	SHAIK AFEEDA	172U1A04B9	SUNNY OPOTECH	51893547
110	CHALLA ROHITHA	172U1A04D3	SUNNY OPOTECH	YES
111	JAMPALA PREETHI	172U1A04E2	SUNNY OPOTECH	431520
112	GUDLURU VYSHNAVI	182U5A0407	SUNNY OPOTECH	51897572
113	PUNAMALLI GNANA PRIYANKA	182U5A0410	SUNNY OPOTECH	51897516
114	YENETI YAMINI	172U1A0465	SUNNY OPOTECH	MPHTH2020-0713
115	CHALLAKOLUSU VENKATA VINAY	172U1A0474	SUNNY OPOTECH	9353345
116	GUNDUBOINA SUPRIYA	172U1A0485	SUNNY OPOTECH	DT20184439376
117	PACHIPALA HARIKA	172U1A04A1	SUNNY OPOTECH	51918381
118	THIKKAVARAPU VENKATA SAI	172U1A0456	WIPRO	51900139
119	CHEVALA NAGA PRIYA	172U1A0475	HCL	80012178
120	MEKALATHURU KEERTHI SRI	172U1A0497	INFOSYS	DT20184439474
121	PADAVALA SUDHEER	172U1A04A2		51894873
122	SADANA NANDINI	172U1A04B6	MPHASIS	13937367
123	BERI SUNDEEP KUMAR	172U1A04D2	TCSL	DT20184439398

124	CHERUKURU DEEPTHI	172U1A04D4	INFOSYS	51894788
125	TENKAYALA YASHWANTH SAI	172U1A04H1	WIPRO	51902799
126	VEDICHERLA POORNA CHANDRA	172U1A04H6	MPHASIS	9348818
127	SYED SANIYAKOUSAR	182U5A0414	INFOSYS	51886569

Geethanjali Institute Of Science And Technology

(Approved by AICTE, New Delhi & Permanently Affiliated to JNTUA , NAAC "A" & Accredited by NBA)